首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-(2'-ethylphenyl)-1,2,3,6-tetrahydropyridine (2'Et-MPTP), and their corresponding pyridinium species was studied in the rat pheochromocytoma PC12 cell line. MPTP and its analogues are known to be metabolized by monoamine oxidase (MAO) to dihydropyridinium intermediates which are further transformed, either enzymatically or spontaneously, into pyridinium species. MAO activity in PC12 cells is almost exclusively of the A form, and 2'Et-MPTP is a good substrate for both MAO-A and MAO-B. In contrast, MPTP is a poor substrate for MAO-A, but a good substrate for MAO-B. 2'Et-MPTP caused considerably more cell death than MPTP in the PC12 cells. However, 1-methyl-4-(2'-ethylphenyl)pyridinium and 1-methyl-4-phenylpyridinium, the corresponding pyridinium species formed from 2'Et-MPTP and MPTP, respectively, were equipotent as toxins. The toxic effects of the tetrahydropyridines and their corresponding pyridiniums were both concentration- and time-dependent. Measurements of the levels of the pyridinium species formed and the remaining tetrahydropyridine in the media indicated that 2'Et-MPTP was converted about five to seven times more readily into its toxic pyridinium species than was MPTP. There was, moreover, an excellent correlation between amount of pyridinium formed and cell death. There was also a parallel between the capacity of clorgyline and pargyline, irreversible MAO inhibitors, to decrease the formation of the pyridinium species and their capacity to protect against the toxic actions of the tetrahydropyridines. These data are consistent with the concept that the MAO-A-dependent formation of the pyridinium species from the tetrahydropyridine is a prerequisite for toxicity in PC12 cells.  相似文献   

2.
Several analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were synthesized and screened for their capacity to be oxidized by monoamine oxidase (MAO-A or MAO-B) and their capacity to produce nigrostriatal dopaminergic neurotoxicity in mice. All of the compounds were relatively weak substrates for MAO-A but many of the compounds were found to be good substrates for MAO-B. Only three of the compounds, in addition to MPTP itself, were found to be neurotoxic. These were 1-methyl-4-cyclohexyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine and 1-methyl-4-(3'-methoxyphenyl)-1,2,3,6-tetrahydropyridine. All three of these neurotoxic compounds were found to be substrates for MAO-B; in contrast no compound was found to be neurotoxic that was not oxidized by MAO-B. The capacity of the compounds studied to be oxidized by MAO-B appears to be an important aspect of the neurotoxic process.  相似文献   

3.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a thermal breakdown product of a meperidine-like narcotic used by drug abusers as a heroin substitute, produces Parkinsonian symptoms in humans and primates. The nigrostriatal toxicity is not due to MPTP itself but to one or more oxidation products resulting from the action of monoamine oxidase (MAO) on this tertiary allylamine. Both MAO A and B catalyse the oxidation of MPTP to the 1-methyl-4-phenyl-2,3-dihydropyridinium species (MPDP+), which undergoes further oxidation to the fully aromatic 1-methyl-4-phenylpyridinium species (MPP+). These bio-oxidations are blocked by selective inhibitors of MAO A and B. Additionally, MPTP, MPDP+ and MPP+ are competitive inhibitors of MAO A and B. The A form of the enzyme is particularly sensitive to this type of reversible inhibition. Both MAO A and B also are irreversibly inactivated by MPTP and MPDP+, but not by MPP+. This inactivation obeys the characteristics of a mechanism-based or 'suicide' process. The inactivation, which is accompanied by the incorporation of radioactivity from methyl-labelled MPTP, is likely to result from covalent modification of the enzyme.  相似文献   

4.
The 1-methyl-4-phenylpyridinium species (MPP+) is the four-electron oxidation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and is widely assumed to be the actual neurotoxic species responsible for the MPTP-induced destruction of dopaminergic neurons. MPTP is oxidized by the enzyme monoamine oxidase-B to a dihydropyridinium intermediate which is oxidized further to MPP+, an effective inhibitor of the oxidation of the Complex I substrates glutamate/malate in isolated mitochondrial preparations. In the present study, the tetraphenylboron anion (TPB) greatly potentiated the inhibitory effects of MPP+ and other selected pyridinium species on glutamate/malate respiration in isolated mouse liver mitochondria. At 10 microM TPB, the potentiation ranged from approximately 50-fold to greater than 1,000-fold for the several pyridinium species tested. In other experiments, TPB greatly enhanced the accumulation of [3H]MPP+ by isolated mitochondrial preparations. This facilitation by TPB of MPP+ accumulation into mitochondria explains, at least in part, the potentiation by TPB of the above-mentioned inhibition of mitochondrial respiration. Moreover, TPB addition increased the amount of lactate formed during the incubation of mouse neostriatal tissue slices with MPTP and other tetrahydropyridines. The administration of TPB also potentiated the dopaminergic neurotoxicity of MPTP in male Swiss-Webster mice. All of these observations, taken together, are consistent with the premise that the inhibitory effect of MPP+ on mitochondrial respiration within dopaminergic neurons is the ultimate mechanism to explain MPTP-induced neurotoxicity.  相似文献   

5.
Monoamine oxidase (MAO) B is a mitochondrial enzyme selectively involved in the oxidative activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin to toxic pyridinium cations producing Parkinsonism in animal models. Various synthesized 5-nitroindazoles, 6-nitroindazole and the neuroprotectant 7-nitroindazole were examined as inhibitors of MAO and as antioxidants and radical scavengers. The oxidation of MPTP by human MAO-B and mitochondria was assessed by HPLC. Simple nitroindazoles inhibited MPTP oxidation to 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+) and 1-methyl-4-phenylpyridinium (MPP+) in a competitive and reversible manner. 5-Nitroindazole (IC50=0.99 µM, Ki=0.102 µM) and 6-nitroindazole (IC50=2.5 µM) were better inhibitors of human MAO-B than 7-nitroindazole (IC50=27.8 µM). 6-Nitroindazole also inhibited MAO-A. Nitroindazole isomers were good hydroxyl radical (OH?) scavengers, with 5-nitro-, 6-nitro- and 7-nitroindazole showing similar activity (k ~1010 M?1 s?1). Neuroprotective actions of nitroindazoles (7-nitroindazole) could be linked to their MAO-inhibitory and antiradical properties besides inhibition on nitric oxide synthase (NOS). 5-Nitro- and 6-nitroindazole, previously reported as weak NOS inhibitors, were better inhibitors of human MAO-B and more active against MPTP neurotoxin oxidation (lower MPDP+ and MPP+ levels) than 7-nitroindazole and acted as good radical scavengers and could be potential neuroprotective agents in addition to MAO-B inhibitors.  相似文献   

6.
Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of amines and neurotransmitters and inhibitors of MAO are useful as neuroprotectants. This work evaluates the human MAO-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a dopaminergic neurotoxin, to the directly-acting neurotoxic metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+) and 1-methyl-4-phenylpyridinium (MPP+) measured by High-Performance Liquid Chromatography (HPLC), and this approach is subsequently used as a new method for screening of MAO inhibitors and protective agents. Oxidation of MPTP by human MAO-B was more efficient than by MAO-A. R-Deprenyl, a known neuroprotectant, norharman (β-carboline), 5-nitroindazole and menadione (vitamin K3) inhibited MAO-B and reduced the formation of toxic pyridinium cations. Clorgyline and the β-carbolines, harman and norharman, inhibited the oxidation of MPTP by MAO-A. Cigarette smoke, as well as the naturally occurring β-carbolines (norharman and harman) isolated from smoke and coffee inhibited the oxidation of MPTP by MAO-B and/or MAO-A, suggesting protective effects against MPTP. The results show the suitability of the approach used to search for new MAO inhibitors with eventual neuroprotective activity.  相似文献   

7.
Abstract: The effects of the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its 4-electron oxidation product 1-methyl-4-phenylpyridinium (MPP+) were studied in isolated mitochondria and in mouse brain striatal slices. ADP-stimulated oxidation of NAD-linked substrates was inhibited in a time-dependent manner by MPP+ (0.1–0.5 m M ), but not MPTP, in mitochondria prepared from rat brain, mouse brain, or rat liver. Under identical conditions, succinate oxidation was relatively unaffected. In neostriatal slices prepared from the mouse, a species susceptible to the dopaminergic neurotoxicity of MPTP, incubation with either MPP+ or MPTP caused metabolic changes consistent with inhibition of mitochondnial oxidation, i.e., an increase in the formation of lactate and accumulation of the amino acids glutamate and alanine with concomitant decreases in glutamine and aspartate levels. The changes resulting from incubation with MPTP were prevented by the monoamine oxidase inhibitor pargyline, which blocks formation of MPP+ from MPTP. The results suggest that compromise of mitochondrial function and its metabolic sequelae within dopaminergic neurons could be an important factor in the neurotoxicity observed after MPTP administration.  相似文献   

8.
Various unstable intermediate oxidation states have been postulated in the metabolic activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl pyridinium ion. We now report the first direct observation of these free radical intermediates by pulse radiolysis and flash photolysis. Studies are described of various reactions of such species, in particular with dopamine whose autoxidation to dopamine quinone is reported to be potentiated by 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine.  相似文献   

9.
Abstract: Seventeen analogues of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine were synthesized using three reaction pathways: condensation of phenols with 1-methyl-4-piperidone, reaction of Grignard reagents with 1-methyl-4-piperidone followed by dehydration of the product, and aminomethylation of olefins. The identity of the products of synthesis was established by nuclear magnetic resonance spectroscopy, mass spectroscopy. and elemental analysis. Thirteen analogues were shown to inhibit the oxidation of benzylamine by bovine plasma amine oxidase. Increasing the length of the aliphatic chain of N -substituted analogues resulted in increased inhibition. In 4-phenyl-substituted analogues, both the position and electronic character of the substituent group affected the degree of inhibition.  相似文献   

10.
Kinetics of monoamine oxidase (MAO) catalyzed dehydrogenation of neurotropic analogues of biogenic monoamines in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine series were studied. It is shown that methyl substitution in the phenyl ring increases significantly the enzyme-substrate affinity, but the substituent's effect on the catalytic stage largely depends upon its position in the ring. o- and m-Methyl derivatives were preferably oxidized by B type of MAO, whereas p-total derivative was oxidized by B type as well as by A type of the enzyme. In the course of the oxidation reactions MAO is irreversibly inhibited by the dihydropyridinium product of the reaction, particularly in case of methyl derivatives. The significant and structure-dependent inhibition of the enzyme might be responsible for the differences in neurotropic properties of the above substrate homologues.  相似文献   

11.
Bovine adrenomedullary chromaffin (BAMC) cells, cultured in a defined medium, were used to study the mechanisms of toxicity and cellular resistance to the catecholamine neuron toxicants 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+). The viability of the cells was assessed biochemically [cellular catecholamine content and the catalytic activities of tyrosine hydroxylase (TH) and lactate dehydrogenase (LDH)] and anatomically (by electron microscopy). When cultures of BAMC cells were exposed to MPTP or MPP+ for 3 days, a marked loss of cellular catecholamines and TH activity was observed. The addition of an inhibitor of monoamine oxidase (MAO) B (Ro 19-6327), but not MAO A (clorgyline), prevented the toxicity of MPTP but not that of MPP+. In addition, the cellular toxicity of MPP+, but not MPTP, was antagonized by desmethylimipramine, an inhibitor of cellular catecholamine uptake. The toxicity of MPP+ was time dependent, with losses of TH and the release of cellular LDH occurring after 48 h in culture. Catecholamine depletion occurred somewhat sooner, being evident after 24 h of exposure to MPP+. The cellular toxicity of MPP+ was concentration dependent and significantly enhanced by inhibitors of catecholamine vesicular uptake (reserpine, tetrabenazine, or Ro 4-1284). Electron microscopic examination of cells treated with either MPP+, tetrabenazine, or their combination revealed that MPP+ damaged BAMC cells and that this damage was markedly potentiated by the inhibition of vesicular uptake by tetrabenazine. The concentration of glucose in the culture media of untreated cells slowly decreased as a function of time. The rate of glucose consumption was markedly accelerated by MPP+ treatment and the losses in cell TH and the release of LDH into the media were preceded by a 99% depletion of glucose from the media. In cultures not treated with MPP+, lactate accumulated in the media as a function of time. Addition of MPP+ to the media increased the formation of lactate, in a concentration-dependent manner. Reserpine pretreatment further enhanced the production of lactate in response to MPP+. Culturing cells in glucose-free medium greatly potentiated the effects of MPP+ on cellular TH and catecholamines. The toxicity observed after 3 days' exposure of BAMC cells to MPP+ could be prevented when the medium was replaced with fresh medium every 24 h. The effects of glucose deprivation and reserpine were observed to be additive. The ability of MPP+ to affect mitochondrial function is determined by the capacity of the storage vesicle to sequester the pyridinium, acting as a cytosolic "buffer."(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Abstract: Subcutaneous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) HC1 (25 mg/kg) in pregnant female mice at the 17th day of gestation markedly depleted striatal dopamine (DA) concentrations in the mothers 24 h later and at 24 h and 28 days after delivery. By contrast, in the offspring of the female mice exposed to MPTP during pregnancy, fetal brain DA concentrations at 24 h after injection and at 24 h after birth and striatal DA levels at 14 and 28 days postnatally were unaffected and identical to those in age-matched controls. The postnatal ontogenesis of striatal DA levels was identical in offspring of control vehicle- and MPTP-treated pregnant mice. Also, prenatal challenge with MPTP did not make nigrostriatal DA neurons more vulnerable to a second postnatal treatment with the toxin. Striatal DA depletions were identical in 6-week-old mice given MPTP, whether they were exposed to MPTP or to vehicle in utero. Monoamine oxidase (EC 1.4.3.4; MAO) type B activity was extremely low in the fetal brain and, relatively, much lower than that of MAO-A. Prenatal MPTP administration reduced maternal striatal and also embryonal brain MAO-B activity at 24 h post treatment but did not alter the normal postnatal development of striatal MAO-A and -B activities in the offspring. Study suggests that resistance of fetal DA neurons to the DA-depleting effect of MPTP may be due, at least in part, to an absence in the embryonal brain of adequately developed MAO-B activity required for the conversion of MPTP to its toxic metabolite, 1-methyl-4-phenylpyridinium ion.  相似文献   

13.
Cultured cerebellar astrocytes rapidly accumulate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) from the incubation medium, reaching a plateau within 10 min, whereas within that time negligible amounts of 1-methyl-4-phenylpyridinium (MPP+) have entered the astrocytes. MPTP accumulation is essentially independent of temperature and is proportional to extracellular concentration at steady state: The steady-state concentration achieved within these cells is about 50-fold higher at relatively low extracellular concentrations. MPTP appears to accumulate intracellularly within lysosomes, because lysosomotropic agents such as ammonium chloride and chloroquine markedly diminish the accumulation. Moreover, a proton gradient is required, because MPTP accumulation is abolished by the hydrogen ion antiporter monensin. Over an interval of several days, MPTP is converted to MPP+ intracellularly, with a concomitant decrease in medium MPTP and increase in medium MPP+. A constant, small but significant amount of MPP+ is retained intracellularly over a 72-h interval. Increasing the medium MPTP concentrations results in increased conversion of MPTP and enhanced intracellular retention of MPTP and MPP+. Neither MPTP nor MPP+ is neurotoxic to cultured cerebellar astrocytes as determined by cell counts and rate of conversion of MPTP to MPP+.  相似文献   

14.
The parkinsonian inducing drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is bioactivated in a reaction catalyzed by the flavoenzyme monoamine oxidase B (MAO-B) to form the corresponding dihydropyridinium and subsequently pyridinium metabolites. As part of our ongoing studies to characterize the structural features responsible for this unexpected biotransformation, we have examined the MAO-B substrate properties of a variety of MPTP analogues bearing various heteroaryl groups at the 4-position of the tetrahydropyridinyl ring. The newly synthesized analogues are 4-(1-methylimidazol-2-yl)-, 4-(3-methylfuran-2-yl)-, 4-(3-methylthien-2-yl)-, 4-(3,4-dimethylpyrrol-1-yl)-, 4-(3-methylpyrrol-2-yl)-, and 4-(1,3-dimethylpyrrol-2-yl)-1-methyl-1,2,3,6-tetrahydropyridine. Except for the 4-(1-methylimidazol-2-yl) analogue, all compounds displayed good to excellent substrate properties. The 1-methyl-4-(3-methylfuran-2-yl) analogue is the most active member of this series with a kcat/Km value greater than 8,500 min(-1)mM(-1). The results of these studies are discussed in terms of catalytic pathways proposed for MAO-B.  相似文献   

15.
Mouse brain synaptosomes, essentially devoid of mitochondrial contamination, were used as a model to study the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) on the levels of ATP of neuronal terminals. Similar to known inhibitors of ATP synthesis, both MPTP and MPP+ caused a dramatic depletion of synaptosomal ATP. This depletion was dose dependent and occurred as a relatively early biochemical event in the absence of any apparent damage to synaptosomal membranes. MPP+ was more effective than its parent compound in decreasing ATP; it induced a significant loss at concentrations (10-100 microM) similar to those it reaches in the brain in vivo. MPTP-induced ATP depletion was completely prevented by the monoamine oxidase B inhibitor deprenyl, which, on the contrary, was ineffective against MPP+. As expected in view of the heterogeneous population of nerve terminals present in our synaptosomal preparations, the catecholamine uptake blocker mazindol did not significantly affect the ATP loss caused by both compounds. Data indicate that (1) administration of MPTP may cause a depletion of ATP within neuronal terminals resulting from the generation of MPP+, and (2) exposure to the levels of MPP+ reached in vivo may cause biochemical changes that are nonselective for dopaminergic terminals.  相似文献   

16.
A saturable, specific, high-affinity binding site for [3H]1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was found in rat brain homogenates. The CNS regional distribution, the subcellular fractionation, and the displacement by pargyline, clorgyline, and deprenyl suggest that this binding site may correspond to monoamine oxidase. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine inhibited the oxidative deamination of dopamine, both in vivo and in vitro. Striatal levels of 3,4-dihydroxyphenylacetic acid were significantly reduced shortly after intravenous administration, and returned to normal values after a few hours. The in vitro formation of 3,4-dihydroxyphenylacetic acid from dopamine was inhibited by concentrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine comparable to those of pargyline.  相似文献   

17.
M V Kindt  R E Heikkila 《Life sciences》1986,38(16):1459-1462
Pretreatment of mice with the potent and selective monoamine oxidase B (MAO-B) inhibitor MDL 72145 ((E)-2-(3',4'-dimethoxyphenyl)-3-fluoroallylamine) protected against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice treated with MDL 72145 prior to MPTP did not exhibit the decrement in the neostriatal content of dopamine and its metabolites normally seen after MPTP administration. This observation adds further support to the concept that the oxidation of MPTP by MAO-B to its corresponding pyridinium analog, 1-methyl-4-phenylpyridinium (MPP+), is an important feature of the neurotoxic process.  相似文献   

18.
The metabolism of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been studied in rat brain mitochondrial incubation mixtures. The 1-methyl-4-phenylpyridinium species MPP+ has been characterized by chemical ionization mass spectral and 1H NMR analysis. Evidence also was obtained for the formation of an intermediate product which, with the aid of deuterium incorporation studies, was tentatively identified as the alpha-carbon oxidation product, the 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+. Comparison of the diode array UV spectrum of this metabolite with that of the synthetic perchlorate salt of MPDP+ confirmed this assignment. The oxidation of MPTP to MPDP+ but not of MPDP+ to MPP+ is completely inhibited by 10(-7) M pargyline. MPDP+, on the other hand, is unstable and rapidly undergoes disproportionation to MPTP and MPP+. Based on these results, we speculate that the neurotoxicity of MPTP is mediated by its intraneuronal oxidation to MPDP+, a reaction which appears to be catalyzed by MAO. The interactions of MPDP+ and/or MPP+ with dopamine, a readily oxidizable compound present in high concentration in the nigrostriatum, to form neurotoxic species may account for the selective toxic properties of the parent drug.  相似文献   

19.
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces dopaminergic cell death in the substantia nigra pars compacta (SNpc) and clinical parkinsonism in humans and experimental animals. Pretreatment with monoamine oxidase inhibitors prevents this cell death and associated parkinsonism by blocking the oxidation of MPTP to a toxic intermediate. The 2-deoxyglucose method was used to study the acute effects of MPTP in the monkey brain and the effects of monoamine oxidase inhibition on local cerebral glucose utilization in both normal and MPTP-treated monkeys. MPTP administration alone caused a major increase in glucose utilization in the SNpc and smaller increases in some subnuclei within the ventral tegmental area in which eventual dopaminergic cell loss also occurs. Pretreatment with pargyline abolished these metabolic increases, a finding suggesting both that the oxidized product of MPTP generates the metabolic increases and that the increased glucose consumption may contribute to cell toxicity. On the other hand, in most cortical, thalamic, striatal, brainstem, and cerebellar areas MPTP alone caused reductions in glucose utilization, and pargyline failed to prevent these effects. Pargyline alone depressed metabolism in the locus coeruleus and a few other monoaminergic structures.  相似文献   

20.
We synthesized a number of fluorinated analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and tested their suitability as substrates for monoamine oxidase B in vitro and their dopaminergic neurotoxicity in vivo. Two of the compounds tested, 2'-F-MPTP and 2'-CF3-MPTP, were better enzyme substrates and possessed more potent neurotoxicity for nigrostriatal dopamine neurons than MPTP, especially 2'-F-MPTP. The results of the in vivo neurotoxicity experiments correlated well with the suitability of the compounds as substrates for monoamine oxidase. These findings could serve as a basis for the use of 18F-labeled analogs of MPTP for positron emission tomography studies of nonhuman primates for better understanding of the factors underlying MPTP toxicity. Furthermore, the discovery of two MPTP analogs with enhanced selective neurotoxicity to dopaminergic neurons may be an important clue in the continuing efforts to define the chemical structure-activity factors governing MPTP neurotoxic activation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号