首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
氧化修饰HDL刺激培养人主动脉平滑肌细胞增殖   总被引:2,自引:0,他引:2  
平滑肌细胞(smooth muscle cell,SMC)增殖在动脉粥样硬化(atherosclerosis,AS)形成中起着重要作用。氧化修饰HDL(oxidixed HDL,OX-HDL)可刺激^3H-TdR掺入培养人动脉SMC的DNA,促进SMC增殖。以四甲工偶氮唑盐9MTT)法直接观察OX-HDL对培养人动脉SMC增殖细胞数的影响。结果显示,天然HDL(native HDL N-HDL)对  相似文献   

2.
铝对玉米生长和硝酸还原酶活性的影响   总被引:2,自引:0,他引:2  
测定了生长在Al2(SO4)3100μmol/L氮素营养液中的两个玉米品种(SC704和VA35的根系和叶片)的NADH-硝酸还原酶(EC1.6.6.1)和NAD(P)H-硝酸还原酶(EC1.6.6.2)活性。  相似文献   

3.
动脉平滑肌细胞(SMC)是动脉粥样硬化(AS)斑块中的主要细胞,它的增殖在AS形成过程中极其重要。脂蛋白和氧化修饰型脂蛋白对SMC增殖的影响以及SMC增殖与原癌基因异常表达的关系是当前AS发病机制研究的热点之一。我们在建立人主动脉SMC体外培养方法的基础上,观察了LDL,VLDL及HDL和相应的氧化修饰型脂蛋白对培养人SMCfos,myc,erb-B原癌基因转录表达的影响。结果表明:①HDL对SMCfos,myc基因表达无影响;②LDL和VLDL有使这些基因表达增加的趋势,但与对照比较差异不显著(P>0.05);③OX-VLDL,OX-VLDL和OX-HDL有使SMCfos,myc基因表达显著增强的作用(P<0.01),且其作用较相应的天然脂蛋白大(P<0.01).上述结果说明:LDL,VLDL,OX-LDL,OX-VLDL和0X-HDL的致AS作用可能与刺激SMCfos和myc癌基因表达增加有关。  相似文献   

4.
目的:研究9-蒽羧酶(9-AC)对豚鼠以肌动作电位(AP)和L型Ca电流(Lca)的影响。方法:电流钳配合制霉菌素膜等孔方法记录心室肌动作电位,用全细胞式膜片钳(Whole cell recording)技术记录Lca。结果:在低CI^-状态下,β肾上腺素能受体激动剂异丙肾上腺素(ISO)可使动作电位时程(APD)明显延长。9-AC单独使用时对AP无作用,但在ISO的作用下,蛋白磷酸酶抑制剂9-A  相似文献   

5.
神经生长因子在6—OHDA化学性去交感神经中的保护作用   总被引:1,自引:0,他引:1  
本实验用6-OHDA造成成年小白鼠颌下腺化学性去交感神经,观察了神经生长因子对该神经的保护作用。6-OHDA处理后24小时腺体内去甲肾上腺素(NE)含量降至正常水平的2%以下。若在6-OHDA处理同时开始多次给予神经生长因子(NGF),则NE残留量明显提高。减小6-OHDA剂量到10mg/kg,NE残留量增加,同时NGF的作用亦较用6-OHDA15mg/kg时列为显著。若提前24小时给予NGF,尽  相似文献   

6.
动脉平滑肌细胞(sm ooth m uscle cell,SMC)是动脉粥样硬化(atherosclerosis,AS)斑块中的主要细胞,它的增殖在AS形成过程中极其重要.利用体外培养的人主动脉SMC,观察了天然高密度脂蛋白(native high density lipoprotein,N-HDL)及氧化修饰HDL(oxidized HDL,OX-HDL)对培养人主动脉SMC cyclin D1(细胞周期蛋白D1)基因转录表达的影响.结果表明:(1)N-HDL对SMCcyclin D1基因表达无影响(P> 0.05);(2)OX-HDL使SMCcyclin D1基因表达显著增强(P<0.01),其表达量随时间(2、12、24 h)延长而增加.上述结果表明,OX-HDL的致AS作用可能与其刺激SMCcyclin D1基因表达增加有关.  相似文献   

7.
三种钠尿肽抑制大鼠肺动脉平滑肌细胞增殖效应的比较   总被引:5,自引:2,他引:5  
Dong MQ  Zhu MZ  Yu J  Shang LJ  Feng HS 《生理学报》2000,52(3):252-254
本文比较了心房钠尿肽(ANP)、C-型钠尿肽(CNP)、血管钠肽(VNP)抑制肺动脉平滑肌细胞(PASMCs)增殖的效应。用蛋白激酶C激动剂佛波酯(PMA)刺激体外培养大鼠PASMCs的增殖,以总蛋白含量和MTT比色OD值为指标,观察三种钠尿肽对PMA刺激大鼠PASMCs增殖的影响。结果表明,PMA(10^-9-10^-7mol/L)显著升高(P<0.05)PASMCs的总蛋白含量和MTTOD值,  相似文献   

8.
Zheng HZ  An GS  Nie SH  Tang CS  Liu NK  Wang SH 《生理学报》1998,50(4):379-384
培养的家兔胸主动脉血管平滑肌细胞(VSMC)分别以内皮素(ET-1)、一氧化氮(NO)前体L-Arg和NO供体SIN-1刺激,或用ET-1+L-Arg、ET-1+SIN-1联合刺激,测VSMC^3H-TdR掺入、丝裂素活化蛋白激酶(MAPK)活性及蛋白激酶C(PKC)活性的改变,以研究NO抑制ET-1促VSMC增殖作用的信号转导途径。结果表明:(1)ET-1 10^-8mol/L单独刺激,^3H-  相似文献   

9.
神经元缺氧复氧损伤时氧自由基的毒性作用及其机制*   总被引:2,自引:0,他引:2  
在原代分离培养Wistar乳鼠大脑皮质神经元上研究了缺氧复氧损伤(H/R)对神经细胞乳酸脱氢酶(LDH),漏出率,死亡率和脂质过氧化物含量的影响,并选用一氧化氮(NO)合酶抑制剂L-NG-硝基-精氨酸(L-NNA)巯基供体N-乙酰半胱氨酸(NAC)和超氧化物歧化酶(Cu,Zn-SOD)三种自由基清除剂进行预保护等方法来探讨机制。结果表明 H/R损伤引起LDH漏出率,细胞死亡率和脂过氧化物含量极显著  相似文献   

10.
应用聚丙烯酰胺凝胶电泳法对比研究了纯系615鼠和L615可移植性淋巴细胞型白血病鼠胸腺和脾脏淋巴细胞的葡萄糖-6-磷酸脱氢酶同工酶(ECl.1.1.49,D-葡萄糖-6-磷酸:NADP氧化还原酶,G6PD)和乳酸脱氢酶同工酶(ECl.1.1.27,L-乳酸:NAD氧化还原酶,LDH)。并应用定量细胞化学法对LDH和6PD全酶活性进行了测定。结果:在L615白血病鼠胸腺淋巴细胞中(白血病细胞占40%),G6PD同工酶谱显示异常,全酶活性明显增高、LDH同工酶谱及全酶活性未发生明显变化。L615白血病鼠脾脏淋巴细胞中(白血病细胞占84%),G6PD和LDH同工酶谱均显示异常,同时全酶活性也明显增强。提示:G6PD对白血病细胞的恶性增殖和浸润似乎更为敏感。  相似文献   

11.
This study aimed to investigate the effect of the activation of dopamine (DA) receptors on ATP-activated currents (IATP) in freshly isolated dorsal root ganglion (DRG) neurons of rats using whole-cell patch clamp technique in combination with intracellular dialysis. Extracellular application of DA inhibited IATP in half of the neurons tested (39/77, 50.6%), enhanced IATP in a small subset of the neurons (22/77, 28.6%), and had no effect on IATP in the rest (16/77, 20.8%). To investigate the DA receptor subtypes that mediate these modulations, the effects of R(-)-NPA, a D2 receptor agonist, and SKF-38393, a D1 receptor agonist, were examined. Preapplication of R(-)-NPA inhibited IATP in most of the cells tested (53/57, 93.0%) and had no effect in the rest (4/57, 7.0%); no potentiating effect was observed. Preapplication of SKF-38393 inhibited IATP in a majority of the cells tested (57/77, 74.0%), potentiated IATP in some cells (12/77, 15.6%), and had no effect in the remainder (8/77, 10.4%). Further study of the inhibitory effect of R(-)-NPA and SKF-38393 revealed that both of them acted in a noncompetitive manner, shifting the concentration-response curve for IATP downwards with the maximal response markedly reduced and EC50 basically unchanged; and the inhibition was independent of the holding potential. Intracellular dialysis of GDP-beta-S and H-7 abolished R(-)-NPA inhibition of IATP completely, and SKF-38393 inhibition of IATP was removed by intracellular application of H-7 but not by H-9. These results suggest that the activation of DA receptors dominantly inhibits IATP in dorsal root ganglion cells, and this inhibition may be involved in the modulation of afferent information by the diencephalon-derived DA in the primary sensory neurons.  相似文献   

12.
We investigated the cardioprotective effect of 3-nitropropionic acid (3-NPA), an inhibitior of mitochondrial succinate dehydrogenase, and we wanted to show whether this protection is mediated by of opening mitochondrial ATP-sensitive potassium (K(ATP)) channels. Adult rabbits were treated with either 3-NPA (3 mg/kg iv) or saline (n = 6 rabbits/group). After 30 min (for early phase) or 24 h (for late phase) of the treatment, the animals were subjected to 30 min of ischemia and 3 h of reperfusion (ischemia-reperfusion). 5-Hydroxydecanoate (5-HD, 5 mg/kg iv),the mitochondrial K(ATP) channel blocker, was administered 10 min before ischemia-reperfusion in the saline- and 3-NPA-treated rabbits. 3-NPA caused a decrease in the infarct size from 27.8 +/- 4.2% in the saline group to 16.5 +/- 1.0% in the 3-NPA-treated rabbits during early phase and from 30.4 +/- 4.2% in the saline group to 17.6 +/- 1.05 in the 3-NPA group during delayed phase (P < 0.05, % of risk area). The anti-infarct effect of 3-NPA was blocked by 5-HD as shown by an increase in infarct size to 33 +/- 2.7% (early phase) and 31 +/- 2.4% (delayed phase) (P < 0.05 vs. 3-NPA groups). 5-HD had no proischemic effect in control animals. Also, 3-NPA had no effect on systemic hemodynamics. We conclude that 3-NPA induces long-lasting anti-ischemic effects via opening of mitochondrial K(ATP) channels.  相似文献   

13.
Neutral sphingomyelinase (nSMase)-derived ceramide has been proposed as a mediator of hypoxic pulmonary vasoconstriction (HPV), a specific response of the pulmonary circulation. Voltage-gated K(+) (K(v)) channels are modulated by numerous vasoactive factors, including hypoxia, and their inhibition has been involved in HPV. Herein, we have analyzed the effects of ceramide on K(v) currents and contractility in rat pulmonary arteries (PA) and in mesenteric arteries (MA). The ceramide analog C6-ceramide inhibited K(v) currents in PA smooth muscle cells (PASMC). Similar effects were obtained after the addition of bacterial sphingomyelinase (SMase), indicating a role for endogenous ceramide in K(v) channel regulation. K(v) current was reduced by stromatoxin and diphenylphosphine oxide-1 (DPO-1), selective inhibitors of K(v)2.1 and K(v)1.5 channels, respectively. The inhibitory effect of ceramide was still present in the presence of stromatoxin or DPO-1, suggesting that this sphingolipid inhibited both components of the native K(v) current. Accordingly, ceramide inhibited K(v)1.5 and K(v)2.1 channels expressed in Ltk(-) cells. Ceramide-induced effects were reduced in human embryonic kidney 293 cells expressing K(v)1.5 channels but not the regulatory subunit K(v)β2.1. The nSMase inhibitor GW4869 reduced the thromboxane-endoperoxide receptor agonist U46619-induced, but not endothelin-1-induced pulmonary vasoconstriction that was partly restored after addition of exogenous ceramide. The PKC-ζ pseudosubstrate inhibitor (PKCζ-PI) inhibited the K(v) inhibitory and contractile effects of ceramide. In MA ceramide had no effect on K(v) currents and GW4869 did not affect U46619-induced contraction. The effects of SMase were also observed in human PA. These results suggest that ceramide represents a crucial signaling mediator in the pulmonary vasculature.  相似文献   

14.
多不饱和脂肪酸对成年雪貂心肌钾通道的作用   总被引:7,自引:0,他引:7  
Xiao YF  Morgan JP  Leaf A 《生理学报》2002,54(4):271-281
本研究是在成年雪貂的心肌上研究多不饱和脂肪酸(PUFA)对电压门控钾通道的效应。我们观察到,n-3 PUFA能抑制短时性外向钾电流(Ito)和延迟整流钾电流(IK),而对内向整流钾电流(IK1)则没有明显影响。二十二碳六烯酸(DHA)对Ito和Ik能产生浓度依赖性的抑制作用,其IC50分别为7.5和20μmol/L,但不影响IK1。二十碳五烯酸(EPA)对这三种钾通道的作用与DHA相似。花生四烯酸(5或10μmol/L)先引起IK的抑制,然后引起IK,AA的激活;用环氧合酶抑制剂消炎痛可以阻断花生四烯酸激活IK,AA的作用。不具有抗心律失常作用的单不饱和脂肪酸和饱和脂肪酸都不明显影响这些钾通道的活性。上述实验结果证明,n-3 PUFA能抑制心肌细胞的Ito和IK,但和我们以前报道的PUFA对心肌钠电流和钙电流的作用相比,其对Ito和IK抑制作用的效能较低。n-3 PUFA的抗心律失常效应可能与它们抑制心肌钠、钙、钾通道的作用有关。  相似文献   

15.
ACh对大鼠皮层体感区神经元延迟整流钾电流的抑制作用   总被引:6,自引:1,他引:5  
Cui LW  Li YR  Yang L  Jia SW  Qu LH  Yao K  Jin HB 《生理学报》2006,58(1):58-64
利用全细胞膜片钳技术研究乙酰胆碱(acetylcholine,ACh)对大鼠皮层体感区神经元延迟整流钾电流(IK)的调制作用。结果表明:(1)ACh(0.1、1、10、100 μmol/L)对大鼠皮层体感区神经元IK有抑制作用,并具有剂量依赖性关系(P<0.01)。 (2)ACh可使IK激活曲线的斜率变大,并使激活曲线向超极化方向移动。IK激活曲线的半数激活电压(V1/12)和斜率因子(k)分别由给药前的(-41.8±9.7)mV和(30.7±7.2)mV变为给药后的(-122.4±38.6)mV和(42.4±7.0)mV。(3)100 μmol/L的N受体拮抗剂筒箭毒碱(tubocurarine)可减弱ACh对IK的抑制作用,在指令电压+60 mV时tubocurarine+ACh组的IK幅度下降了(16.9± 13.8)%(n=8),与10 μmol/L ACh组引起的(36.5±7.8)%的IK下降幅度相比,有极显著差异(P<0.01)。10 μmol/L的M1受体拮抗剂哌仑西平(pirenzepin)拮抗ACh对IK的抑制作用不明显(n=7,P>0.05);而10 μmol/L的M3受体拮抗剂4-DAMP可部分拮抗ACh对IK的抑制作用,并且4-DAMP+ACh组使IK的电流值下降了(26.8±4.7)%(n=6),与ACh组引起的IK电流下降相比,有显著差异(P<0.05)。(4)蛋白激酶C(protein kinase C,PKC)阻断剂chelerythrine拮抗ACh对IK的抑制作用,PKC激动剂PDBu可增强ACh对IK的抑制作用(P<0.05)。综上所述,ACh对人鼠皮层体感区神经元IK的抑制作用主要是通过烟碱受体(nAChRs)和M3受体介导,并经过PKC信号途径。  相似文献   

16.
Extracts of pine needles (Pinus densiflora Sieb. et Zucc.) have diverse physiological and pharmacological actions. In this study we show that pine needle extract alters pacemaker currents in interstitial cells of Cajal (ICC) by modulating ATP-sensitive K+ channels and that this effect is mediated by prostaglandins. In whole cell patches at 30 degrees , ICC generated spontaneous pacemaker potentials in the current clamp mode (I = 0), and inward currents (pacemaker currents) in the voltage clamp mode at a holding potential of -70 mV. Pine needle extract hyperpolarized the membrane potential, and in voltage clamp mode decreased both the frequency and amplitude of the pacemaker currents, and increased the resting currents in the outward direction. It also inhibited the pacemaker currents in a dose-dependent manner. Because the effects of pine needle extract on pacemaker currents were the same as those of pinacidil (an ATP-sensitive K+ channel opener) we tested the effect of glibenclamide (an ATP-sensitive K+ channels blocker) on ICC exposed to pine needle extract. The effects of pine needle extract on pacemaker currents were blocked by glibenclamide. To see whether production of prostaglandins (PGs) is involved in the inhibitory effect of pine needle extract on pacemaker currents, we tested the effects of naproxen, a non-selective cyclooxygenase (COX-1 and COX-2) inhibitor, and AH6809, a prostaglandin EP1 and EP2 receptor antagonist. Naproxen and AH6809 blocked the inhibitory effects of pine needle extract on ICC. These results indicate that pine needle extract inhibits the pacemaker currents of ICC by activating ATP-sensitive K+ channels via the production of PGs.  相似文献   

17.
We previously showed that dopamine receptors D1R and D2R expressed in NG108-15 cells activated protein kinase A and extracellular signal-regulated kinase (ERK) respectively, resulting in differential activation of nuclear factor (NF)-kappaB activity. To investigate whether other dopamine receptor subtypes regulate NF-kappaB, we established NG108-15 cells stably expressing D3R, D4R and D5R (NGD3R, NGD4R and NGD5R). D5R stimulation with SKF 38393 decreased NF-kappaB luciferase reporter activity in NGD5R cells, similar to D1R stimulation in NGD1R cells. However, D3R or D4R stimulation with quinpirole showed no change in NF-kappaB-Luci activity, although forskolin-induced cyclic AMP responsive element-Luci activation was attenuated by quinpirole treatment in NGD2LR, NGD3R and NGD4R cells. As expected, activation of ERK or serum responsive element-luciferase reporter not observed following stimulation with quinpirole in D3R- or D4R-expressing cells. We further examined the effects of haloperidol and risperidone, which are typical and atypical antipsychotic drugs respectively, on NF-kappaB activity by gel shift assay in mouse frontal cortex. Haloperidol treatment slightly attenuated basal NF-kappaB activity. By contrast, risperidone treatment enhanced NF-kappaB activity. Taken together, D2R and D1R/D5R had opposite effects on NF-kappaB activity in NG108-15 cells. Risperidone up-regulated and haloperidol down-regulated NF-kappaB activity in mouse brain. This effect may be related to the atypical antipsychotic properties of risperidone.  相似文献   

18.
Activation of apolipoprotein E receptor-2 (apoER2) and very low density lipoprotein receptor (VLDLR) inhibits foam cell formation. Reelin is a ligand of these receptors. Here we generated two reelin subregions containing the receptor binding domain with or without its C-terminal region (R5-6C and R5-6, respectively) and studied the impact of these peptides on macrophage cholesterol metabolism. We found that both R5-6C and R5-6 can be secreted by cells. Purified R5-6 protein can bind apoER2 and VLDLR. Overexpression of apoER2 in macrophages increased the amount of R5-6 bound to the cell surface. Treatment of macrophages with 0.2 μg/ml R5-6 elevated ATP binding cassette A1 (ABCA1) protein level by ~72% and apoAI-mediated cholesterol efflux by ~39%. In addition, the medium harvested from cells overexpressing R5-6 or R5-6C (R5-6- and R5-6C-conditioned media, respectively) also up-regulated ABCA1 protein expression, which was associated with accelerated cholesterol efflux and enhanced phosphorylation of phosphatidylinositol 3 kinase (PI3K) and specificity protein-1 (Sp1) in macrophages. The increased ABCA1 expression and cholesterol efflux by R5-6- and R5-6C-conditioned media were diminished by Sp1 or PI3K inhibitors mithramycin A and LY294002. Further, the cholesterol accumulation induced by apoB-containing, apoE-free lipoproteins was significantly less in macrophages incubated with R5-6- or R5-6C-conditioned medium than in those incubated with control conditioned medium. Knockdown of apoER2 or VLDLR attenuated the inhibitory role of R5-6-conditioned medium against lipoprotein-induced cholesterol accumulation. These results suggest that the reelin subregion R5-6 can serve as a tool for studying the role of apoER2 and VLDLR in atherogenesis.  相似文献   

19.
Patch-clamp whole-cell and single-channel current recordings were made from pig pancreatic acinar cells to test the effects of quinine, quinidine, Ba2+ and Ca2+. Voltage-clamp current recordings from single isolated cells showed that high external concentrations of Ba2+ or Ca2+ (88 mM) abolished the outward K+ currents normally associated with depolarizing voltage steps. Lower concentrations of Ca2+ only had small inhibitory effects whereas 11 mM Ba2+ almost blocked the K+ current. 5.5 mM Ba2+ reduced the outward K+ current to less than 30% of the control value. Both external quinine and quinidine (200-500 microM) markedly reduced whole-cell outward K+ currents. In single-channel current studies it was shown that external Ba2+ (1-5 mM) markedly reduced the probability of opening of high-conductance Ca2+ and voltage-activated K+ channels whereas internal Ba2+ (6 X 10(-6) to 3 X 10(-5) M) caused activation at negative membrane potentials and inhibition at positive potentials. Quinidine (200-400 microM) evoked rapid chopping of single K+ channel openings acting both from the outside and inside of the membrane and in this way markedly reduced the total current passing through the channels.  相似文献   

20.
Many forms of neurodegeneration are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage, however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are primary events in the delayed onset observed in Huntington's disease (HD). We hypothesize that an age-dependent increase in mtDNA damage contributes to mitochondrial dysfunction in HD. Two HD mouse models were studied, the 3-nitropropionic acid (3-NPA) chemically induced model and the HD transgenic mice of the R6/2 strain containing 115-150 CAG repeats in the huntingtin gene. The mitochondrial toxin 3-NPA inhibits complex II of the electron transport system and causes neurodegeneration that resembles HD in the striatum of human and experimental animals. We measured nuclear and mtDNA damage by quantitative PCR (QPCR) in striatum of 5- and 24-month-old untreated and 3-NPA treated C57BL/6 mice. Aging caused an increase in damage in both nuclear and mitochondrial genomes. 3-NPA induced 4-6 more damage in mtDNA than nuclear DNA in 5-month-old mice, and this damage was repaired by 48h in the mtDNA. In 24-month-old mice 3NPA caused equal amounts of nuclear and mitochondrial damage and this damage persistent in both genomes for 48h. QPCR analysis showed a progressive increase in the levels of mtDNA damage in the striatum and cerebral cortex of 7-12-week-old R6/2 mice. Striatum exhibited eight-fold more damage to the mtDNA compared with a nuclear gene. These data suggest that mtDNA damage is an early biomarker for HD-associated neurodegeneration and supports the hypothesis that mtDNA lesions may contribute to the pathogenesis observed in HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号