首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation and thermodynamic characteristics of C-H ... O hydrogen bonding of methylated uracils and caffeine have been studied by nmr along two lines. 1. The concentration and temperature dependencies of the PMR spectra of 1,3-dimethyluracil (m2 1,3Ura), 1,3-dimethylthymine (m2 1,3Thy), and 1,3,6-trimethyluracil (m3 1,3,6Ura) in chloroform at high concentrations of base analogs indicated the self-association of m2 1,3Ura and m2 1,3Thy via C(6)H ... O hydrogen bonding and the competitive formation of C-H ... O bonds between carbonyl oxygens and chloroform. The intermolecular interaction energy and the arrangement of molecules in the local minima of various m2 1,3Ura dimers were calculated by the method of atom-atom potentials. The deepest minimum for the m2 1,3Ura coplanar dimer corresponds to a C(6)-H ... O hydrogen-bond formation. 2. At low concentration of m2 1,3Ura and caffeine in CCl4, C(6)-H ... O bonding for m2 1,3Ura and C(8)-H ... O bonding for caffeine with oxygens of dimethyl sulfoxide (DMSO) and acetone were observed. The association constants of these complexes were obtained at different temperatures. The enthalpies delta H, of the m2 1,3Ura-DMSO, m2 1,3Ura-accetone, caffeine-DMSO, and caffeine-acetone complexes were -2 +/- 0.1 kcal/mol. The calculations showed that the deepest minimum of the caffeine-acetone coplanar complex corresponds to C(8)-H ... O bonding with energy of -3.5 kcal/mol and that of the m2 1,3Ura-acetone complexes corresponds to C(6)-H ... O bonding with energy of -3.4 kcal/mol. The approximate correction for the solvent effect provides good agreement of the experimental data with the calculations.  相似文献   

2.
The formation of water clusters, polyhydrates of nucleotide bases and their associates during simultaneous condensation of water and base molecules in vacuo onto a surface of a needle emitter cooled to 170 K was studied by field ionization mass spectrometry. It was found that different emitter temperatures are characterized by a specific distribution of intensities of cluster currents, depending on the number of water molecules in clusters. These distributions correlate with structural peculiarities and the relative energetics of formation of water clusters, polyhydrates of nucleotide bases and their associates at low temperature. The features observed in mass spectra for clusters m9Ade (H2O)5, m1Ura (H2O)4 and m9Ade m1Ura (H2O)2 are treated as a result of formation of energetically favorable structures stabilized by H-bonded bridges of water molecules. The relative association constants and formation enthalpies of the noncomplementary pairs Ade Cyt, Gua Ura and the associates which model the aminoacid-base complexes m1Ura Gln and m1.3(2)Thy Gln were determined from the temperature dependencies of the intensities of mass spectra peaks in the range 290-320 K.  相似文献   

3.
The partial molar isentropic compressibilities at infinite dilution, K(S,2)(o), have been determined for the peptides serylglycine, serylglycylglycine and serylglycylglycylglycine in aqueous solution at 25 degrees C. The partial molar volumes at infinite dilution, V(2)(o), have also been determined for these peptides in aqueous solution at the temperatures 15, 30 and 40 degrees C. These results, along with those obtained previously at 25 degrees C, were used to derive the partial molar exansibilities, E(2)(o), of the peptides at 25 degrees C, which in turn were used to convert the isentropic compressibilities into the partial molar isothermal compressibilities at infinite dilution, K(T,2)(o). These K(S,2)(o) and K(T,2)(o) results were used to obtain the partial molar compressibilities of the glycyl group CH(2)CONH at 25 degrees C. The results are compared with those obtained using data for other series of peptides of sequence ala(gly)(n), n=1-4, and (gly)(n), n=2-5.  相似文献   

4.
Apparent molar relative enthalpies of dilution φLof aqueous solutions of a series of alkylated diketopyrimidines: m1Ura, m1,32Ura, m1,32Thy, m1,3,63Ura and e1,32Thy were measured as a function of concentration of the solutes at three temperatures 298.15, 308.15 and 318.15 K. Dilution proved to be an endothermic process over the whole range of molalities m and temperatures studied for all compounds except the e1,32Thy solution, the dilution of which, with the exception of the lowest concentrations (m > 0.2–0.3) was an exothermic process. Partial molar relative enthalpies of dilution -L2(m) derived from φL(m) functions were analysed as if they were composed of two additive contributions: an endothermic one -L2, (m1) and an exothermic one 1.2, (mas0), owing to the presence in the solutions of a free monomer m1 or associated species mas, respectively. Partial molar heat capacities of the solutes, evaluated by differentiation of -L2(m) functions in respect to temperature, decreased with the rise of concentration in the order of the tendency of the solutes to stacking association. Changes in heat content and in heat capacity of solutions upon their dilution are interpreted in terms of involvement of hydrophobic hydration and association of the solutes.  相似文献   

5.
The partial molar heat capacities have been determined for the series of peptides alanyl(glycyl)(x)glycine, x=1-3, and for the compounds N-acetylglycinamide and N-acetyl glycylglycinamide in aqueous solution over the temperature range 10-100 degrees C using high sensitivity scanning microcalorimetry. The partial molar volumes for these compounds have also been determined over the temperature range from 10 to 90 degrees C using a scanning densimetric method. The results were used to derive the partial molar heat capacities and volumes of the glycyl group at temperatures in the range 10-100 degrees C. The results obtained are critically compared with literature results derived using heat capacity and volume data for some oligoglycines.  相似文献   

6.
A number of nucleic acid base pairs and complexes between the bases and the amide group of acrylamide have been studied experimentally by using mass spectrometry and theoretically by the method of atom-atom potential function calculations. It has been found from temperature dependencies of peak intensities in mass spectra of m2.2.9(3) Gua.m1Ura, m9 Ade.m1Cyt, m2.2.9(3) Gua.m1Gua.m1Cyt pairs that enthalpy values, delta H, of the complex formation are equal to 14.2 +/- 1.1, 13.5 +/- 1.3 and 16.4 +/- 1.4 kcal/M, respectively, and those of acrylamide with m1.3(2) Ura and m1Thy corresponds to 9.7 +/- 1.0 and 6.8 +/- 0.6 kcal/M. There is a good agreement of the experimental data with calculations when taking into account both the amino-oxo and the amino-hydroxy tautomeric forms of guanine. A combined use of the data allows us to determine the energy, the modes of interaction and the structure of the complexes. The results are discussed in connection with the modelling of molecular structure of biopolymers by the method of classical potential functions, protein-nucleic acids recognition and fidelity of nucleic acids biosynthesis.  相似文献   

7.
Ross L Stein 《Biochemistry》2002,41(3):991-1000
Aryl acylamidase (EC 3.1.5.13; AAA) catalyzes the hydrolysis of p-nitroacetanilide (PNAA) via the standard three-step mechanism of serine hydrolases: binding of substrate (K(s)), acylation of active-site serine (k(acyl)), and hydrolytic deacylation (k(deacyl)). Key mechanistic findings that emerged from this study include that (1) AAA requires a deprotonated base with a pK(a) of 8.3 for expression of full activity toward PNAA. Limiting values of kinetic parameters at high pH are k(c) = 7 s(-1), K(m) = 20 microM, and k(c)/K(m) = 340 000 M(-1) s(-1). (2) At pH 10, where all the isotope effects were conducted, k(c) is equally rate-limited by k(acyl) and k(deacyl). (3) The following isotope effects were determined: (D)()2(O)(k(c)/K(m)) = 1.7 +/- 0.2, (D)()2(O)k(c) = 3.5 +/- 0.3, and (beta)(D)(k(c)/K(m)) = 0.83 +/- 0.04, (beta)(D)k(c) = 0.96 +/- 0.01. These values, together with proton inventories for k(c)/K(m) and k(c), suggest the following mechanism: (i) The initial binding of substrate to enzyme to form the Michaelis complex is accompanied by solvation changes that generate solvent deuterium isotope effects originating from hydrogen ion fractionation at multiple sites on the enzyme surface. (ii) From within the Michaelis complex, the active site serine attacks the carbonyl carbon of PNAA with general-base catalysis to form a substantially tetrahedral transition state enroute to the acyl-enzyme. (iii) Finally, deacylation occurs through a process involving a rate-limiting solvent isotope effect, generating conformational change of the acyl-enzyme that positions the carbonyl bond in a polarizing environment that is optimal for attack by water.  相似文献   

8.
Subtype-selective alpha-1a and/or alpha-1d adrenergic receptor antagonists may be useful for the treatment of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS) with fewer adverse effects than non-selective drugs. A series of 1-arylpiperazinyl-4-cyclohexylamine derived isoindole-1,3-diones has been synthesized, displaying in vitro alpha(1a) and alpha(1d) binding affinity K(i) values in the range of 0.09-38nM with K(i)(alpha1b)/K(i)(alpha1a) and K(i)(alpha1b)/K(i)(alpha1d) selectivity ratios up to 3607-fold.  相似文献   

9.
Abstract

The formation of water clusters, polyhydrates of nucleotide bases and their associates during simultaneous condensation of water and base molecules in vacuo onto a surface of a needle emitter cooled to 170 K was studied by field ionization mass spectrometry. It was found that different emitter temperatures are characterized by a specific distribution of intensities of cluster currents, depending on the number of water molecules in clusters. These distributions correlate with structural peculiarities and the relative energetics of formation of water clusters, polyhydrates of nucleotide bases and their associates at low temperature. The features observed in mass spectra for clusters m9Ade (H2O)5, m1Ura (H2O)4 and m9Ade m1Ura (H2O)2 are treated as a result of formation of energetically favorable structures stabilized by H-bonded bridges of water molecules.

The relative association constants and formation enthalpies of the noncomplementary pairs Ade Cyt, Gua Ura and the associates which model the aminoacid-base complexes m1Ura Gin and m2 1,3Thy Gin were determined from the temperature dependencies of the intensities of mass spectra peaks in the range 290–320 K.  相似文献   

10.
To identify selective high-affinity ligands for the vesicular acetylcholine transporter (VAChT), we have incorporated a carbonyl group into the structures of trozamicol and prezamicol scaffolds, and also converted the secondary amines of the piperidines of trozamicols and prezamicols into amides. Of 18 new racemic compounds, 4 compounds displayed high affinity for VAChT (K(i)=10-20 nM) and greater than 300-fold selectivity for VAChT over σ(1) and σ(2) receptors, namely (4-(4-fluorobenzoyl)-4'-hydroxy-[1,3'-bipiperidin]-1'-yl)(3-methylthiophen-2-yl)methanone oxalate (9g) (K(i-VAChT)=11.4 nM, VAChT/σ(1)=1063, VAChT/σ(2)=370), (1'-benzoyl-4'-hydroxy-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10c) (K(i-VAChT)=15.4 nM, VAChT/σ(1)=374, VAChT/σ(2)=315), (4'-hydroxy-1'-(thiophene-2-carbonyl)-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10e) (K(i-VAChT)=19.0 nM, VAChT/σ(1)=1787, VAChT/σ(2)=335), and (4'-hydroxy-1'-(3-methylthiophene-2-carbonyl)-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10g) (K(i-VAChT)=10.2 nM, VAChT/σ(1)=1500, VAChT/σ(2)=2030). These four compounds can be radiosynthesized with C-11 or F-18 to validate their possibilities of serving as PET probes for quantifying the levels of VAChT in vivo.  相似文献   

11.
Values of K, delta G(o), delta H(o), delta S(o) and delta C(po) for the binding reaction of small organic ligands forming 1:1 complexes with either alpha- or beta-cyclodextrin were obtained by titration calorimetry from 15 degrees C to 45 degrees C. A hydrogen bond or hydrophobic interaction was introduced by adding a single functional group to the ligand. The thermodynamics of binding with and without the added group are compared to estimate the contribution of the hydrogen bond or hydrophobic interaction. A change in the environment of a functional group is required to influence the binding thermodynamics, but molecular size-dependent solute-solvent interactions have no effect. For phenolic O-H-O hydrogen bond formation, delta H(o) varies from -2 to -1.4 kcal mol(-1) from 15 degrees C to 45 degrees C, and delta C(p) is increased by 18 cal K(-1) mol(-1). The hydrophobic interaction has an opposite effect: in alpha-cyclodextrin, delta C(po) = -13.3 cal K(-1) mol(-1) per ligand -CH(2)-, identical to values found for the transfer of a -CH(2)-group from water to a nonpolar environment. At room temperature, the hydrogen bond and the -CH(2)-interaction each contribute about -600 cal mol(-1) to the stability (delta G(o)) of the complex. With increased temperature, the hydrogen bond stability decreases (i.e., hydrogen bonds "melt"), but the stability of the hydrophobic interaction remains essentially constant.  相似文献   

12.
Thermal denaturation curves of ribonuclease-A were measured by monitoring changes in the far-UV circular dichroism (CD) spectra in the presence of different concentrations of six sugars (glucose, fructose, galactose, sucrose, raffinose and stachyose) and mixture of monosaccharide constituents of each oligosaccharide at various pH values in the range of 6.0-2.0. These measurements gave values of T(m) (midpoint of denaturation), DeltaH(m) (enthalpy change at T(m)), DeltaC(p) (constant-pressure heat capacity change) under a given solvent condition. Using these values of DeltaH(m), T(m) and DeltaC(p) in appropriate thermodynamic relations, thermodynamic parameters at 25 degrees C, namely, DeltaG(D)(o) (Gibbs energy change), DeltaH(D)(o) (enthalpy change), and DeltaS(D)(o) (entropy change) were determined at a given pH and concentration of each sugar (including its mixture of monosaccharide constituents). Our main conclusions are: (i) each sugar stabilizes the protein in terms of T(m) and DeltaG(D)(o), and this stabilization is under enthalpic control, (ii) the protein stabilization by the oligosaccharide is significantly less than that by the equimolar concentration of the constituent monosaccharides, and (iii) the stabilization by monosaccharides in a mixture is fully additive. Furthermore, measurements of the far- and near-UV CD spectra suggested that secondary and tertiary structures of protein in their native and denatured states are not perturbed on the addition of sugars.  相似文献   

13.
The thermodynamics governing the denaturation of RNA duplexes containing 8 bp and a central tandem mismatch or 10 bp were evaluated using UV absorbance melting curves. Each of the eight tandem mismatches that were examined had one U-U pair adjacent to another noncanonical base pair. They were examined in two different RNA duplex environments, one with the tandem mismatch closed by G.C base pairs and the other with G.C and A.U closing base pairs. The free energy increments (Delta Gdegrees(loop)) of the 2 x 2 loops were positive, and showed relatively small differences between the two closing base pair environments. Assuming temperature-independent enthalpy changes for the transitions, (Delta Gdegrees(loop)) for the 2 x 2 loops varied from 0.9 to 1.9 kcal/mol in 1 M Na(+) at 37 degrees C. Most values were within 0.8 kcal/mol of previously estimated values; however, a few sequences differed by 1.2-2.0 kcal/mol. Single strands employed to form the RNA duplexes exhibited small noncooperative absorbance increases with temperature or transitions indicative of partial self-complementary duplexes. One strand formed a partial self-complementary duplex that was more stable than the tandem mismatch duplexes it formed. Transitions of the RNA duplexes were analyzed using equations that included the coupled equilibrium of self-complementary duplex and non-self-complementary duplex denaturation. The average heat capacity change (DeltaC(p)) associated with the transitions of two RNA duplexes was estimated by plotting DeltaH degrees and DeltaS degrees evaluated at different strand concentrations as a function of T(m) and ln T(m), respectively. The average DeltaC(p) was 70 +/- 5 cal K(-)(1) (mol of base pairs)(-)(1). Consideration of this heat capacity change reduced the free energy of formation at 37 degrees C of the 10 bp control RNA duplexes by 0.3-0.6 kcal/mol, which may increase Delta Gdegrees(loop) values by similar amounts.  相似文献   

14.
In a kinetic study, the interaction of bovine pancreatic cholesterol esterase (CEase) with fused 1,3-oxazin-4-ones and 1,3-thiazin-4-ones was investigated, and the compounds were characterized as alternate substrate inhibitors. Inhibition assays were performed in the presence of sodium taurocholate with p-nitrophenyl butyrate as chromogenic substrate. Strong active site-directed inhibition was detected for 2-diethylaminothieno[2,3-d][1,3]oxazin-4-ones with a cycloaliphatic chain at positions 5,6. The most potent inhibitors, compounds 3 and 4, exhibited K(i) values of 0.58 and 1.86 microm, respectively. An exchange of the ring oxygen by sulfur and the removal of the cycloaliphatic moiety as well as the replacement of the thiophene ring by benzene led to a loss of inhibitory potency. CEase has the capability to catalyze the hydrolysis of representatives of fused 1,3-oxazin-4-ones as well as the highly stable 1,3-thiazin-4-ones by using an acylation-deacylation mechanism. Hydrolyses were performed in the presence of a high enzyme concentration, and products were identified spectrophotometrically and by means of high performance liquid chromatography. The kinetic parameters V(max)I and V(max)I/K(m)(I) for the CEase-catalyzed turnover were determined. The compounds whose enzyme-catalyzed hydrolysis followed first-order kinetics (K(m)(I) > 25 microm) failed to inhibit CEase. On the other hand, inhibitors 3 (initial concentration of 25 microm) and 4 (20 microm) were hydrolyzed by CEase under steady-state conditions in the first phase of the reaction. Rate-limiting deacylation was demonstrated in nucleophilic competition experiments with ethanol as acyl acceptor wherein the conversion of compound 3 was accelerated up to an ethanol concentration of 1.5 m. The characterization of these compounds (i.e. 3 and 4) as alternate substrate inhibitors is not only based on the verification of the CEase-catalyzed hydrolysis. It also rests upon the concurrence of corresponding K(i) values obtained in the inhibition assay compared with separately determined K(m)(I) values of their enzyme-catalyzed consumption, as could be predicted from the kinetic model used in this study.  相似文献   

15.
Little is known about the thermodynamic forces that drive the folding pathways of higher-order RNA structure. In this study, we employ calorimetric [isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC)] and spectroscopic (NMR and UV) methods to characterize the thermodynamics of the GAAA tetraloop-receptor interaction, utilizing a previously described bivalent construct. ITC studies indicate that the bivalent interaction is enthalpy driven and highly stable, with a binding constant (K(obs)) of 5.5x10(6) M(-1) and enthalpy (DeltaH(obs)(o)) of -33.8 kcal/mol at 45 degrees C in 20 mM KCl and 2 mM MgCl(2). Thus, we derive the DeltaH(obs)(o) for a single tetraloop-receptor interaction to be -16.9 kcal/mol at these conditions. UV absorbance data indicate that an increase in base stacking quality contributes to the enthalpy of complex formation. These highly favorable thermodynamics are consistent with the known critical role for the tetraloop-receptor motif in the folding of large RNAs. Additionally, a significant heat capacity change (DeltaC(p,obs)(o)) of -0.24 kcal mol(-1) K(-1) was determined by ITC. DSC and UV-monitored thermal denaturation experiments indicate that the bivalent tetraloop-receptor construct follows a minimally five-state unfolding pathway and suggest the observed DeltaC(p,obs)(o) for the interaction results from a temperature-dependent unbound receptor RNA structure.  相似文献   

16.
The SLC4A1/AE1 gene encodes the electroneutral Cl(-)/HCO(3)(-) exchanger of erythrocytes and renal type A intercalated cells. AE1 mutations cause familial spherocytic and stomatocytic anemias, ovalocytosis, and distal renal tubular acidosis. The mutant mouse Ae1 polypeptide E699Q expressed in Xenopus oocytes cannot mediate Cl(-)/HCO(3)(-) exchange or (36)Cl(-) efflux but exhibits enhanced dual sulfate efflux mechanisms: electroneutral exchange of intracellular sulfate for extracellular sulfate (SO(4)(2-)(i)/SO(4)(2-)(o) exchange), and electrogenic exchange of intracellular sulfate for extracellular chloride (SO(4)(2-)(i)/Cl(-)(o) exchange). Whereas wild-type AE1 mediates 1:1 H(+)/SO(4)(2-) cotransport in exchange for either Cl(-) or for the H(+)/SO(4)(2-) ion pair, mutant Ae1 E699Q transports sulfate without cotransport of protons, similar to human erythrocyte AE1 in which the corresponding E681 carboxylate has been chemically converted to the alcohol (hAE1 E681OH). We now show that in contrast to the normal cis-stimulation by protons of wild-type AE1-mediated SO(4)(2-) transport, both SO(4)(2-)(i)/Cl(-)(o) exchange and SO(4)(2-)(i)/SO(4)(2-)(o) exchange mediated by mutant Ae1 E699Q are inhibited by acidic pH(o) and activated by alkaline pH(o). hAE1 E681OH displays a similarly altered pH(o) dependence of SO(4)(2-)(i)/Cl(-)(o) exchange. Elevated [SO(4)(2-)](i) increases the K(1/2) of Ae1 E699Q for both extracellular Cl(-) and SO(4)(2-), while reducing inhibition of both exchange mechanisms by acid pH(o). The E699Q mutation also leads to increased potency of self-inhibition by extracellular SO(4)(2-). Study of the Ae1 E699Q mutation has revealed the existence of a novel pH-regulatory site of the Ae1 polypeptide and should continue to provide valuable paths toward understanding substrate selectivity and self-inhibition in SLC4 anion transporters.  相似文献   

17.
Case A  Stein RL 《Biochemistry》2006,45(7):2443-2452
Ubiquitin C-terminal hydrolases (UCHs) cleave Ub-X bonds (Ub is ubiquitin and X an alcohol, an amine, or a protein) through a thioester intermediate that is produced by nucleophilic attack of the Cys residue of a Cys-SH/His-Im catalytic diad. We are studying the mechanism of UCH-L1, a UCH that is implicated in Parkinson's disease, and now wish to report our initial findings. (i) Pre-steady-state kinetic studies for UCH-L1-catalyzed hydrolysis of Ub-AMC (AMC, 7-amido-4-methylcoumarin) indicate that k(cat) is rate-limited by acyl-enzyme formation. Thus, K(m) = K(s), the dissociation constant for the Michaelis complex, and k(cat) = k(2), the rate constant for acyl-enzyme formation. (ii) For K(assoc) (=K(s)(-)(1)), DeltaC(p) = -0.8 kcal mol(-)(1) deg(-)(1) and is consistent with coupling between substrate association and a conformational change of the enzyme. For k(2), DeltaS(++) = 0 and suggests that in the E-S, substrate and active site residues are precisely aligned for reaction. (iii) Solvent isotope effects are (D)K(assoc) = 0.5 and (D)k(2) = 0.9, suggesting that the substrate binds to a form of free enzyme in which the active site Cys exists as the thiol. In the resultant Michaelis complex, the diad has tautomerized to ion pair Cys-S(-)/His-ImH(+). Subsequent attack of thiolate produces the acyl-enzyme species. In contrast, isotope effects for association of UCH-L1 with transition-state analogue ubiquitin aldehyde suggest that an alternative mechanistic pathway can sometimes be available to UCH-L1 involving general base-catalyzed attack of Cys-SH by His-Im.  相似文献   

18.
Protein misfolding is monitored by a variety of cellular "quality control" systems. Endoplasmic reticulum (ER) quality control handles misfolded secretory and membrane proteins and is well characterized. However, less is known about the quality control of misfolded cytosolic proteins (CytoQC). To study CytoQC, we have employed a genetic system in Saccharomyces cerevisiae using a transplantable degron, CL1 (1). Attachment of CL1 to the cytosolic protein Ura3p destabilizes Ura3p, targeting it for rapid proteasomal degradation. We have performed a comprehensive analysis of Ura3p-CL1 degradation requirements. As shown previously, we observe that the ER-localized ubiquitin E2 (Ubc6p, Ubc7p, and Cue1p) and E3 (Doa10p) machinery involved in ER-associated degradation (ERAD) are also responsible for the degradation of the cytosolic substrate Ura3p-CL1. Importantly, we find that the cytosol/ER membrane-localized chaperones Ydj1p and Ssa1p, known to be necessary for the ERAD of membrane proteins with misfolded cytosolic domains, are also required for the ubiquitination and degradation of Ura3p-CL1. In addition, we show a role for the Cdc48p-Npl4p-Ufd1p complex in the degradation of Ura3p-CL1. When ubiquitination is blocked, a portion of Ura3p-CL1 is ER membrane-localized. Furthermore, access to the cytosolic face of the ER is required for the degradation of CL1 degron-containing proteins. The ER is distributed throughout the cytosol, and our data, together with previous studies, suggest that the cytosolic face of the ER membrane serves as a "platform" for the degradation of Ura3p-CL1, which may also be the case for other CytoQC substrates.  相似文献   

19.
Energetic basis of molecular recognition in a DNA aptamer   总被引:1,自引:0,他引:1  
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC-3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T(m)=50.2+/-0.2 degrees C and a folding enthalpy DeltaH(0)(fold)=-49.0+/-2.1 kcal mol(-1). These values agree with values of T(m)=49.6 degrees C and DeltaH(0)(fold)=-51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T(m) of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy DeltaG(0)(bind)=-5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with DeltaH(0)(bind)=-8.7 kcal mol(-1). Combination of enthalpy and free energy produce an unfavorable entropy of -TDeltaS(0)=+3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K(-1) was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures. From the calculated changes in solvent accessible surface areas of these structures a molar heat capacity change of -125 cal mol(-1) K(-1) was calculated, a value in excellent agreement with the experimental value. The thermodynamic signature, along with the coupled CD spectral changes, suggest that the binding of L-argininamide to its DNA aptamer is an induced-fit process in which the binding of the ligand is thermodynamically coupled to a conformational ordering of the nucleic acid.  相似文献   

20.
Specific recognition of the mRNA 5' cap by eukaryotic initiation factor eIF4E is a rate-limiting step in the translation initiation. Fluorescence spectroscopy and high-sensitivity isothermal titration calorimetry were used to examine the thermodynamics of eIF4E binding to a cap-analogue, 7-methylGpppG. A van't Hoff plot revealed nonlinearity characterized by an unexpected, large positive molar heat capacity change (DeltaC(degree)(p) = +1.92 +/- 0.93 kJ.mol(-1).K(-1)), which was confirmed by direct ITC measurements (DeltaC(degree)(p) = +1.941 +/- 0.059 kJ.mol(-1).K(-1)). This unique result appears to come from an extensive additional hydration upon binding and charge-related interactions within the binding site. As a consequence of the positive DeltaC(degree)(p), the nature of the thermodynamic driving force changes with increasing temperature, from enthalpy-driven and entropy-opposed, through enthalpy- and entropy-driven in the range of biological temperatures, into entropy-driven and enthalpy-opposed. Comparison of the van't Hoff and calorimetric enthalpy values provided proof for the ligand protonation at N(1) upon binding, which is required for tight stabilization of the cap-eIF4E complex. Intramolecular self-stacking of the dinucleotide cap-analogue was analyzed to reveal the influence of this coupled process on the thermodynamic parameters of the eIF4E-mRNA 5' cap interaction. The temperature-dependent change in the conformation of 7-methylGpppG shifts significantly the intrinsic DeltaH(degree)(0) = -72.9 +/- 4.2 kJ.mol(-1) and DeltaS(degree)(0) = -116 +/- 58 J.mol(-1).K(-1) of binding to the less negative resultant values, by DeltaH(degree)(sst) = +9.76 +/- 1.15 kJ.mol(-1) and DeltaS(degree)(sst) = +24.8 +/- 2.1 J.mol(-1).K(-1) (at 293 K), while the corresponding DeltaC(degree)(p)(sst) = -0.0743 +/- 0.0083 kJ.mol(-1).K(-1) is negligible in comparison with the total DeltaC(degree)(p) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号