首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Reaction of the antitumor protein neocarzinostatin with 1,2-cyclohexanedione in 0.25 M borate buffer, pH 9.0, resulted in complete modification of arginine residues in positions 66, 67, and 78. The arginine-modified protein lost its native structure and was biologically inactive in the inhibition of growth of HeLa cells, inhibition of DNA synthesis, and in vitro DNA strand scissions. Trypsin hydrolysis of 1,2-cyclohexanedione-modified neocarzinostatin resulted in selective cleavage of the Lys-Val (positions 20 and 21) bond of the primary structure yielding NH2-terminal 1-20 and the COOH-terminal 21-109 residue fragments. The latter contained modified arginine residues. Both peptide fragments were biologically inactive. Treatment of the arginine-modified neocarzinostatin and the arginine-protected 89-residue fragment with 0.25 M Tris-acetate buffer, pH 9.0, for 15 h resulted in the release of 1,2-cyclohexanedione, regenerating all three arginine residues. The regenerated protein and the 89-residue fragment were fully active biologically. Further, the regenerated 89-residue fragment possessed 70% of the reactivity of neocarzinostatin with antibody raised against the native protein. The conformation of the 89-residue fragment was almost identical with that of the native protein in CD spectral properties.  相似文献   

2.
1. A base-nonspecific ribonuclease from Aspergillus saitoi [RNase Ms, EC 3.1.4.23; molecular weight, 12,500] was modified with phenylglyoxal (PG) and 1,2-cyclohexanedione (CHD) in order to determine whether a single arginine residue was involved in the active site of the enzyme. 2. RNase Ms was inactivated by both PG and CHD with concomitant loss of one arginine residue. A competitive inhibitor of RNase Ms, 2',(3')-AMP, protected the enzyme from inactivation by PG. These findings strongly suggest that one arginine residue is involved in the active site of RNase Ms. 3. Difference CD spectra were measured at pH 5.5 for the binding of 2'-AMP and adenosine to native RNase Ms and the CHD- and PG-modified enzyme derivatives to determine the association constants. The arginine modification brought about a marked decrease in the binding affinity of 2'-AMP for the enzyme, but only a slight decrease for adenosine, suggesting that the arginine residue had interacted with the phosphate groups of the substrate.  相似文献   

3.
Arginyl residues in the NADPH-binding sites of phenol hydroxylase   总被引:1,自引:0,他引:1  
Phenol hydroxylase was inactivated by the arginine reagents 2,3-butanedione, 1,2-cyclohexanedione, and phenylglyoxal. The cosubstrate NADPH, as well as NADP+ and several analogues thereof, protected the enzyme against inactivation. Phenol did not protect the activity against any of the reagents used, nor did modification by 2,3-butanedione affect the binding of phenol. We propose the presence of arginyl residues in the binding sites for the adenosine phosphate part of NADPH.  相似文献   

4.
The interaction between the "electron transferring flavoprotein" (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the beta-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.  相似文献   

5.
Inactivation of yeast phosphoglyceromutase (tetramer) with 1,2-cyclohexanedione correlates with the modification of six arginyl residues per mole of the enzyme. Protection experiments using 3-phosphoglycerate suggest that four arginyl residues (one residue per subunit) are involved in the binding of the substrate to the enzyme. The modified enzyme reversibly regained its activity upon incubation with hydroxylamine. The reactivity of lysyl residues which have been shown to be involved in the active site is markedly reduced in the enzyme inactivated with 1,2-cyclohexanedione, indicating that the lysyl and arginyl residues are in close proximity in the active site.  相似文献   

6.
Rat liver ATP citrate lyase was inactivated by 2, 3-butanedione and phenylglyoxal. Phenylglyoxal caused the most rapid and complete inactivation of enzyme activity in 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid buffer, pH 8. Inactivation by both butanedione and phenylglyoxal was concentration-dependent and followed pseudo- first-order kinetics. Phenylglyoxal also decreased autophosphorylation (catalytic phosphate) of ATP citrate lyase. Inactivation by phenylglyoxal and butanedione was due to the modification of enzyme arginine residues: the modified enzyme failed to bind to CoA-agarose. The V declined as a function of inactivation, but the Km values were unaltered. The substrates, CoASH and CoASH plus citrate, protected the enzyme significantly against inactivation, but ATP provided little protection. Inactivation with excess reagent modified about eight arginine residues per monomer of enzyme. Citrate, CoASH and ATP protected two to three arginine residues from modification by phenylglyoxal. Analysis of the data by statistical methods suggested that the inactivation was due to modification of one essential arginine residue per monomer of lyase, which was modified 1.5 times more rapidly than were the other arginine residues. Our results suggest that this essential arginine residue is at the CoASH binding site.  相似文献   

7.
D-Amino acid oxidase is inactivated by reaction with 1,2-cyclohexanedione in borate buffer at pH 8.8. The reaction follows pseudo-first-order kinetics. The present of benzoate, a substrate-competitive inhibitor of the enzyme, protects substantially against inactivation. Partial reactivation could be obtained by removal of borate and its substitution with phosphate buffer. The reaction of 1,2-cyclohexanedione with the enzyme at different inhibitor concentrations appears to follow a saturation kinetics, indicating the formation of an intermediate complex between enzyme and inhibitor prior to the inactivation process. The partially inactivated enzyme shows the same apparent Km but a decreased V as compared to the native D-amino acid oxidase. Similarly, the inhibited enzyme fails to bind benzoate. Amino acid analysis of the 1,2-cyclohexanedione-treated enzyme at various times of inactivation shows no loss of amino acid residues except for arginines. Analysis of the reaction data by statistical methods indicates that three arginine residues react with the inhibitor at slightly different rates, and that one of them is essential for catalytic activity. The presence of benzoate, while it prevents the loss of activity, reduces by one the number of arginine residues hit by the reagent in the reaction of 1,2-cyclohexanedione with D-amino acid oxidase.  相似文献   

8.
The interaction between the “electron transferring flavoprotein” (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the β-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.  相似文献   

9.
A protein modification method has been developed for the production of human big endothelin (ET)-1. Production of a large quantity of big ET-1 by the method described here is expected to facilitate future experiments such as X-ray crystallography and nuclear magnetic resonance studies, aimed at understanding the tertiary structure of big ET-1 and its dynamics. The plasmid pETB-50 used for the synthesis carries the gene for a fusion protein consisting of 34-amino acid (aa) residues of an N-terminal portion of -galactosidase and the 38-aa residues of big ET-1. The fusion protein ETB-50P contains an arginine residue in the big ET-1 portion at its second C-terminal site and three lysine residues including the C-terminal site in the -galactosidase portion, all of which are susceptible to trypsin. Tryptic digestion of the fusion protein quantitatively produced big ET-1 (1–37), which is depleted in the C-terminal serine. However, a treatment of the fusion protein with 1,2-cyclohexanedione prior to tryptic digestion gave full-length big ET-1 with N7,-N8-(1,2-dihydroxycyclohex-1,2-ylene)-arginine. This modification was reversed to the intact arginine residue when the modified big ET-1 was incubated in 0.5 M TRIS-HCI buffer, pH 8.0. Consequently, a combination of such a reversible protein modification and tryptic digestion gave 1.74 mg of recombinant big ET-1 from 2.01 of culture broth. The procedure described here may be applied to produce other arginine-containing peptides from fusion proteins.  相似文献   

10.
Reaction of the NADP-dependent glutamate dehydrogenase of Neurospora with 1,2-cyclohexanedione results in a biphasic loss of enzyme activity. At the end of the rapid phase of the reaction (t1/2 = 1.5 min) the enzyme activity is diminished by approximately 60% with the simultaneous loss of 1 residue of arginine per subunit. After 60 min, the enzyme activity is completely lost with the modification of a total of 2 arginine residues per subunit. Reaction of bovine liver glutamate dehydrogenase with cyclohexanedione causes a rapid loss of approximately 45% of the enzyme activity and modification of about 1.5 residues of arginine per subunit. More prolonged treatment results in reaction of an additional 4 residues of arginine per subunit but is without further effect on the residual activity. The activity of the Neurospora enzyme is not protected by substrate, coenzyme, or a combination of both; however, the activity of the bovine enzyme is partially protected by high levels of NAD or NADP. Although the Km for alpha-ketoglutarate is unchanged by a limited modification of either enzyme with cyclohexanedione, the Km for coenzyme is increased about 2-fold for the Neurospora enzyme and about 1.5-fold for the bovine enzyme. The Ki of the Neurospora dehydrogenase for the competitive inhibitor 2'-monophosphoadenosine-5'-diphosphoribose is unchanged by the enzyme modification, but nicotinamide mononucleotide, a competitive inhibitor for the native Neurospora enzyme, does not inhibit the glutamate dehydrogenase with 1 modified arginine residue. This finding implies that the modified arginine is at or near the nicotinamide binding iste of the enzyme.  相似文献   

11.
M Fujioka  Y Takata 《Biochemistry》1981,20(3):468-472
The baker's yeast saccharopine dehydrogenase (EC 1.5.1.7) was inactivated by 2,3-butanedione following pseudo-first-order reaction kinetics. The pseudo-first-order rate constant for inactivation was linearly related to the butanedione concentration, and a value of 7.5 M-1 min-1 was obtained for the second-order rate constant at pH 8.0 and 25 degrees C. Amino acid analysis of the inactivated enzyme revealed that arginine was the only amino acid residue affected. Although as many as eight arginine residues were lost on prolonged incubation with butanedione, only one residue appears to be essential for activity. The modification resulted in the change in Vmax, but not in Km, values for substrates. The inactivation by butanedione was substantially protected by L-leucine, a competitive analogue of substrate lysine, in the presence of reduced nicotinamide adenine dinucleotide (NADH) and alpha-ketoglutarate. Since leucine binds only to the enzyme-NADH-alpha-ketoglutarate complex, the result suggests that an arginine residue located near the binding site for the amino acid substrate is modified. Titration with leucine showed that the reaction of butanedione also took place with the enzyme-NADH-alpha-ketoglutarate-leucine complex more slowly than with the free enzyme. The binding study indicated that the inactivated enzyme still retained the capacity to bind leucine, although the affinity appeared to be somewhat decreased. From these results it is concluded that an arginine residue essential for activity is involved in the catalytic reaction rather than in the binding of the coenzyme and substrates.  相似文献   

12.
Incubation of homogeneous preparations of L-threonine dehydrogenase from Escherichia coli with 2,3-butanedione, 2,3-pentanedione, phenylglyoxal, or 1,2-cyclohexanedione causes a time- and concentration-dependent loss of enzymatic activity; plots of log percent activity remaining versus time are linear to greater than 90% inactivation, indicative of pseudo-first order inactivation kinetics. The reaction order with respect to the concentration of modifying reagent is approximately 1.0 in each case suggesting that the loss of catalytic activity is due to one molecule of modifier reacting with each active unit of enzyme. Controls establish that this inactivation is not due to modifier-induced dissociation or photoinduced nonspecific alteration of the dehydrogenase. Essentially the same Km but decreased Vmax values are obtained when partially inactivated enzyme is compared with native. NADH (25 mM) and NAD+ (70 mM) give full protection against inactivation whereas much higher concentrations (i.e. 150 mM) of L-threonine or L-threonine amide provide a maximum of 80-85% protection. Amino acid analyses coupled with quantitative sulfhydryl group determinations show that enzyme inactivated 95% by 2,3-butanedione loses 7.5 arginine residues (out of 16 total)/enzyme subunit with no significant change in other amino acid residues. In contrast, only 2.4 arginine residues/subunit are modified in the presence of 80 mM NAD+. Analysis of the course of modification and inactivation by the statistical method of Tsou (Tsou, C.-L. (1962) Sci. Sin. 11, 1535-1558) demonstrates that inactivation of threonine dehydrogenase correlates with the loss of 1 "essential" arginine residue/subunit which quite likely is located in the NAD+/NADH binding site.  相似文献   

13.
The use of 0.2 M NaOH as a solvent for modification of arginine residues by 1,2-cyclohexanedione in disulfide containing proteins is destructive to the disulfide bonds. Modification can be conveniently done in 0.1 M triethylamine (pH 10.9) without any deleterious effect. Lysozyme was found to retain all its enzymic activity in 0.1 M triethylamine (pH 10.9) whereas complete loss of activity took place in 0.2 M NaOH.  相似文献   

14.
Modification of one or two arginine residues in pig-heart cytoplasmic aspartate aminotransferase with 1,2-cyclohexanedione nearly abolishes its catalytic activity and abolishes its ability to bind dicarboxylic acids. The modification is competitively inhibited by glutaric acid. Modification of the enzyme causes no change in its ability to transaminate alanine, but causes a tenfold increase in the Michaelis constant and a 104 fold decrease in the rate of transamination of aspartate. These results indicate that the binding site for the β-carboxyl group of aspartic acid is an arginine residue.  相似文献   

15.
The NADP-specific glutamate dehydrogenase (EC 1.4.1.4) of Neurospora crassa is inhibited by reaction with 1,2-cyclohexanedione which binds to arginine residues. With the 14C-labeled reagent, a peptide was isolated with the sequence: Gly-Gly-Leu-Arg-Leu-His-Pro-Ser-Val-Asn-Leu, corresponding to residues 78 through 88 in the protein. The arginine, residue 81, was present as N7,N8-(1,2-dihydroxycyclohex-1,2-ylene)-arginyl (or DHCH-arginine). Present evidence indicates that this arginine residue resides at or near the nicotinamide binding domain of the enzyme. Similar sequences are present in the bovine liver enzyme (EC 1.4.1.3) and the NAD-specific glutamate dehydrogenase of Neurospora (EC 1.4.1.2).  相似文献   

16.
A sequence is presented for the COOH-terminal 669 residues of the NAD-specific glutamate dehydrogenase of Neurospora crassa. Comparison of this sequence with those of the vertebrate glutamate dehydrogenases of chicken and bovine liver and with the NADP-specific enzyme of Neurospora shows some similarities in sequences around residues previously identified as important for the function of these enzymes. These are: (a) the reactive lysine residue of low pK in the NADP and the vertebrate enzymes; (b) the tyrosine residue of the NADP enzyme that is readily nitrated by tetranitromethane with inactivation, a residue protected by NADP or by NMN; and (c) the arginine residue of the NADP-enzyme that is reactive with 1,2-cyclohexanedione with inactivation. Despite these similarities, comparison of the sequence of the NAD-enzyme with those of the other glutamate dehydrogenases of known sequences revealed relatively little overall homology as determined by computer analysis.  相似文献   

17.
In gramicidin S synthetase 2 (GS 2) from Bacillus brevis, L-proline, L-valine, L-ornithine, and L-leucine activations to aminoacyl adenylates are progressively inhibited by phenylglyoxal. The inactivation of GS 2 obeys pseudo-first-order kinetics. ATP completely prevents inactivation of GS 2 by phenylglyoxal, whereas amino acids only partially prevent it. In the presence of ATP, four arginine residues per mol of GS 2 are protected from modification by phenylglyoxal as determined by amino acid analysis and the incorporation of [7-14C]phenylgloxal into the enzyme protein, indicating that a single arginine residue is necessary for each amino acid activation. In isoleucyl tRNA synthetase from Escherichia coli, phenylglyoxal inhibits activation of L-isoleucine to isoleucyl adenylate. ATP completely prevents inactivation, although isoleucine only partially prevents it. One arginine residue of isoleucyl tRNA synthetase is protected by ATP from modification by phenylglyoxal, suggesting that a single arginine residue is essential for isoleucine activation. These results support the involvement of arginine residues in ATP binding with GS 2 or isoleucyl tRNA synthetase, and thus indicate that arginine residues of amino acid activating enzymes are essential for the formation of aminoacyl adenylates in both nonribosomal and ribosomal peptide biosynthesis.  相似文献   

18.
P Pasta  G Mazzola  G Carrea 《Biochemistry》1987,26(5):1247-1251
Diethyl pyrocarbonate inactivated the tetrameric 3 alpha,20 beta-hydroxysteroid dehydrogenase with second-order rate constants of 1.63 M-1 s-1 at pH 6 and 25 degrees C or 190 M-1 s-1 at pH 9.4 and 25 degrees C. The activity was slowly and partially restored by incubation with hydroxylamine (81% reactivation after 28 h with 0.1 M hydroxylamine, pH 9, 25 degrees C). NADH protected the enzyme against inactivation with a Kd (10 microM) very close to the Km (7 microM) for the coenzyme. The ultraviolet difference spectrum of inactivated vs. native enzyme indicated that a single histidyl residue per enzyme subunit was modified by diethyl pyrocarbonate, with a second-order rate constant of 1.8 M-1 s-1 at pH 6 and 25 degrees C. The histidyl residue, however, was not essential for activity because in the presence of NADH it was modified without enzyme inactivation and modification of inactivated enzyme was rapidly reversed by hydroxylamine without concomitant reactivation. Progesterone, in the presence of NAD+, protected the histidyl residue against modification, and this suggests that the residue is located in or near the steroid binding site of the enzyme. Diethyl pyrocarbonate also modified, with unusually high reaction rate, one lysyl residue per enzyme subunit, as demonstrated by dinitrophenylation experiments carried out on the treated enzyme. The correlation between inactivation and modification of lysyl residues at different pHs and the protection by NADH against both inactivation and modification of lysyl residues indicate that this residue is essential for activity and is located in or near the NADH binding site of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Reaction of 1,2-cyclohexanedione with chicken heart cytosolic aspartate transaminase results in loss of enzyme activity complying to first order kinetics up to 70% inactivation. The inactivation rate is markedly decreased in the presence of alpha-ketoglutarate, glutarate or alpha-methylaspartate. The number of arginine residues modified per subunit was approximately two (in enzyme preparations which retained 30% residual activity). The diketone-modified enzyme nearly completely loses affinity for alpha-methylaspartate and glutarate; in contrast, its ability to bind alpha-alanine and catalyze its transamination half-reaction with the bound coenzyme remains unimpaired. From these data it can be inferred that a functional arginine residue is the cationic binding site for the distal carboxyl group of the substrates. The transaminase apoenzyme was inactivated with cyclohexanedione at the same rate as reconstituted holoenzyme. Measurements of circular dichroism showed that the modified apoenzyme is capable to bind pyridoxal-P. No evidence was obtained for the presence of an arginine residue in the coenzyme binding site.  相似文献   

20.
H F Gilbert  M H O'Leary 《Biochemistry》1975,14(23):5194-5199
Primary amines react with 2,4-pentanedione at pH 6-9 to form enamines, N-alkyl-4-amino-3-penten-2-ones. The latter compounds readily regenerate the primary amine at low pH or on treatment with hydroxylamine. Guanidine and substituted guanidines react with 2,4-pentanedione to form N-substituted 2-amino-4,6-dimethylpyrimidines at a rate which is lower by at least a factor of 20 than the rate of reaction of 2,4-pentanedione with primary amines. Selective modification of lysine and arginine side chains in proteins can readily be achieved with 2,4-pentanedione. Modification of lysine is favored by reaction at pH 7 or for short reaction times at pH 9. Selective modification of arginine is achieved by reaction with 2,4-pentanedione for long times at pH 9, followed by treatment of the protein with hydroxylamine. The extent of modification of lysine and arginine side chains can readily be measured spectrophotometrically. Modification of lysozyme with 2,4-pentanedione at pH 7 results in modification of 3.8 lysine residues and less than 0.4 arginine residue in 24 hr. Modification of lysozyme with 2,4-pentanedione at pH 9 results in modification of 4 lysine residues and 4.5 arginine residues in 100 hr. Treatment of this modified protein with hydroxylamine regenerated the modified lysine residues but caused no change in the modified arginine residues. One arginine residue seems to be essential for the catalytic activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号