首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
粟穗螟滞育的形成和解除与环境条件的关系   总被引:1,自引:0,他引:1  
潘学贤  程开禄 《昆虫学报》1993,36(4):451-458
粟穗螟Manpava bipunctella Ragonot在川南地区为二化性兼性滞育的昆虫。光周期是诱发滞育的主导因素,在中位温度下,滞育与否主要取决于幼虫发育期间的每日光照时数。在2s℃恒温下,临界光周期为14小时38分。幼虫对光照刺激反应的敏感期为低龄期。 温度和食料效应只发生在每天14小时以上的长光照下,低温有抵销长光照抑制滞育的作用,高温影响不显著;取食玉米的幼虫滞育率比高粱的高,并随寄主生育阶段的发展而增高。该虫滞育解除必需每天14-15小时的长光照;不利于滞育发育和解除,适宜温度为10一25℃。本文最后讨论了该虫滞育形成和解除的特点对发生规律的作用及在测报上的意义。  相似文献   

7.
8.
9.
10.
This study was designed to investigate whether the larval development of an anuran amphibian could be modified by raising the animals in continuous light or darkness instead of under conditions of diurnal illumination, and to quantify the effects of these treatments at various intervals during this period of development.
Larvae of the frog, Rana pipiens , were raised through metamorphosis under conditions of constant light, constant darkness, or diurnal lighting. As measured by stages of development, body weight, tail length and body length at 20-day intervals, no significant differences in growth rate or metamorphic change were observed until near the middle of the prometamorphic period, which began at approximately the 50th day of development. After midmetamorphosis, a significant acceleration in the measured parameters was seen for the animals raised in conditions of constant light in comparison with those in constant darkness. Those with diurnal lighting were intermediate.
These results suggested that light, or its absence, can respectively stimulate or retard amphibian metamorphosis in late larval stages after the hypothalamo-hypophyseal-thyroid axis has matured. Neither continuous light nor continuous darkness during larval development prevented the transformation from tadpole to frog.  相似文献   

11.
12.
Previous studies have shown that both genes and cytoplasm have important effects on the number of anthers and external ovules borne by the staminal columns of flowers on plants with the EO gene. Under Mississippi Delta conditions a single plant may produce flowers daily for three months or more. The basic premise for the study reported here was that each of these 100-200 flowers of a single plant exposed a constant gene-cytoplasm combination to an extremely variable environment. Highly significant correlations with environment were found as follows: Number of anthers with relative humidity 22 days before anthesis, number of external ovules with minimum temperature 19 days before anthesis, and percentage of sterile anthers with maximum temperature 15-16 days before anthesis. The external ovule property thus permits study of flower differentiation by manipulating three different variables: (1) cytoplasm, (2) gene dosage, and (3) environment.  相似文献   

13.
14.
15.
温度对棉蚜繁殖速度的影响   总被引:2,自引:0,他引:2  
作者于1981—1983年在棉花苗龄一致、棉蚜试验基数一致、隔离天敌动物及有翅蚜条件下,利用4—7月份的棉田不同温、湿度条件,研究了棉田温度对棉蚜繁殖速度的影响。结果证明:棉田五日平均温度(以下简称温度)17.6—24.0℃,棉蚜繁殖速度最快,五日内繁殖21.9—46.0倍;温度低于和高于此范围,达12.7℃和25.0—31.2℃时,棉蚜繁殖速度减慢,同期分别繁殖4.2倍和6.3—19.2倍。同时证明:在伏期7月份当温度在上述适温范围内时,棉蚜繁殖速度快,而当温度高至26.7—30.9℃处于适温范围以外时,其繁殖速度同样减慢,同期繁殖4.5—19.2倍。由此说明,确利于棉蚜繁殖的适温范围大体为17—24℃;棉蚜繁殖在5月份苗期和7月份伏期的适温范围基本一致。  相似文献   

16.
17.
18.
19.
温湿度对神泽氏叶螨发育历期和产卵量的影响   总被引:6,自引:0,他引:6  
将神泽氏叶螨Tetranychus kanzawai Kishida分别置于15℃,RH80%;20℃,RH75%;25℃,RH70%;30℃,RH65%;35℃,RH60%的恒温恒湿箱内单个饲养,观察其个体发育、孵化率、存活率和产卵量,结果为:35℃,RH60%条件下,雌、雄一代发育历期最短,为(6.23±0.44)山成螨最高日产卵量13.95±3.72)粒;平均日产卵量7.18±1.56)粒; 从成螨开始产卵至死亡50%产卵期最短,为(9.65±1.53)山卵孵化率72.4%;幼螨存活率84.6%。15℃,RH80%条件下,雌、雄一代发育历期最长,为(27.49±2.23)山成螨最高日产卵量(5±1.21)粒;平均日产卵量(2.04±0.55)粒;从成螨开始产卵至死亡50%产卵期最长,为(28.4±4.06)d:卵孵化率85.6%;幼螨存活率97.0%。15℃,RH80%处理成螨寿命为(35±8.85)d,比20℃,75%处理成螨寿命长(13.9±6.4)d。试验结果表明,不同的温湿度对神泽氏叶螨生长发育有一定的影响,35℃发育速率最快,15℃发育速率最慢,20~30℃为最适发育温度。  相似文献   

20.
These experiments serve to show that neutral salts in amounts considerably below those commonly employed in culture solutions may be very injurious to pollen. It has been found, for example, that NaCl, one of the least toxic salts tried, excepting CaCl2, added to a sucrose solution in a concentration of 0.0002 M, or about 11 parts per million, reduces the growth of sweet pea pollen tubes 15 per cent. When it is considered that MgCl2 and BaCl2 are about fifteen times as toxic as NaCl it becomes evident that the susceptibility of pollen tubes to injury by these substances amounts virtually to hypersensitiveness. On the other hand calcium salts in concentrations ranging from 0.02 to 0.002 M markedly enhance the growth of sweet pea pollen tubes. MgCl2 has a similar action in the case of Nicotiana. Calcium, moreover, exerts a strong protective action in the presence of the injurious monovalent cations Na and K. So far as can be determined by microchemical means these salts do not alter the wall of the pollen tube; presumably, their effect is on the protoplast itself. In the light of recent experimentation (Osterhout) with other forms better adapted to precise investigation of these phenomena it seems probable that the explanation of the facts presented here lies in changes brought about in the permeability of the cells. Since several gaps exist in our evidence, however, conclusions drawn at this time must necessarily be provisional. The highly injurious action manifested by the cations of several of the salts used indicates that they penetrate the protoplast very rapidly. Possibly in pure sucrose cultures, exosmosis is a limiting factor in pollen tube growth. The addition of salts of calcium or magnesium may favor development by retarding or preventing this outward diffusion. The protective effect of calcium in the presence of the toxic cations K and Na is best interpreted on the assumption that the entry of these latter into the protoplast is retarded by the calcium. The mode by which hydrogen ion concentration affects pollen tube growth is largely a matter of speculation. It has previously been been shown by Brink that the time relations of the growth process simulate those of an autocatalytic reaction. It has been demonstrated also that elongation of the tubes in artificial media is related to the digestion of the reserve food materials contributed by the pollen grain. In the case of the sweet pea these stored substances are largely fats and their hydrolysis may constitute the most important chemical reaction in growth. If, as seems not improbable, the other reactions involved wait upon this one, it is the "master reaction" according to Robertson''s hypothesis. If this conception really applies to the case in hand as outlined, the effect of the concentration of hydrogen ions on growth may be a direct one. It is known that the action of the fat-splitting enzyme lipase is favored by a certain amount of free acid. The maximum rate of germination of the pollen and the greatest amount of growth of the pollen tubes occur at pH 6.0. This may be due in large part to the immediate effect of this concentration of hydrogen ions upon the digestion of the reserve food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号