首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sprague-Dawley rats were stressed by immobilization from 30 to 300 minutes and the effects on serotonin (5-HT) and 5-hydroxy-indoleacetic acid (5-HIAA) content were determined in the cerebral cortex, diencephalon, striatum, hippocampus and the brain stem. In a subsequent study 5-HT turnover rate in these brain areas was estimated by measuring 5-HIAA accumulation 0, 30, 60 and 90 minutes after probenecid. The content of 5-HIAA and the turnover rate of 5-HT were significantly increased in the cerebral cortex shortly after the onset of immobilization. The content of 5-HIAA in the brainstem was increased by immobilization although 5-HT turnover rate was not increased. Short term increases in 5-HIAA content were observed in the striatum and hippocampus. However, no significant changes in 5-HT turnover rate were observed in either of these 2 brain areas. Immobilization did not affect 5-HIAA content or 5-HT turnover in the diencephalon. The sensitivity of the serotonergic system in the cerebral cortex to immobilization stress suggests that this brain region could be used in future studies of the interrelationships between stress and the brain serotonergic system.  相似文献   

2.
E H Lee 《Life sciences》1987,40(7):635-642
Effects of apomorphine (APO) and clonidine (CLON) on the mesostriatal and mesolimbic serotonergic systems were examined in the present study. Both drugs selectively elevated serotonin (5-HT) concentrations in the dorsal raphe and the striatum without significantly altering 5-HT measures in the median raphe and the hippocampus. Apomorphine also increased tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) levels in the dorsal raphe and 5-HIAA level in the striatum. Clonidine did not markedly alter tryptophan and 5-HIAA measures, while it decreased 5-HT turnover rate in both region, as indicated by the ratio of 5-HIAA/5-HT levels. Co-administration of APO and CLON, at doses of each drug exerted maximum effects on 5-HT alone, produced an additive effect on 5-HT in the dorsal raphe, while their effects on 5-HT and 5-HIAA in the striatum were counteracting each other. Effects of APO on 5-HT and 5-HIAA were attributed to the elevation of 5-HT precursor tryptophan, while effects of CLON on 5-HT and 5-HIAA were due to a decreased rate of 5-HT turnover. Therefore, the present results support the hypothesis that the additive effects of APO and CLON on dorsal raphe 5-HT are mediated through different receptors and neuropharmacological mechanisms.  相似文献   

3.
《Life sciences》1996,59(15):PL239-PL246
The effects of single (1mg/kg) and repeated (1mg/kg 21 daily for 4 days) diazepam administration are investigated on brain regional 5-hydroxytryptamine (5-HT; serotonin) and 5-hydroxy indoleacetic acid (5-HIAA) concentration in rats. Daily treatment decreased food intakes but body weights did not decrease. Administration of diazepam (1mg/kg) to 4 day sahne injected rats on the 5th day decreased 5-HT levels in the hippocampus and increased it in the hypothalamus. 5-HIAA levels were increased in the striatum and decreased in the hypothalamus. 4 day diazepam injected rats injected with sahne on the 5th day also exhibited silmilar changes of 5-HT and 5-HIAA. Cortical levels of 5-HIAA were also smaller in these rats. Administration of diazepam to 4 day diazepam injected rats again decreased 5-HT in the hippocampus and 5-HIAA in the hypothalamus. 5-HT and 5-HIAA were both decreased in the striatum. Regionally specific effects of diazepam on brain serotonin metabolism are discussed in relation to their possible functions.  相似文献   

4.
The effects of phencyclidine (PCP) on the levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in discrete brain areas of mouse were investigated. Following a single administration, PCP significantly increased at 60 min the level of 5-HT but not 5-HIAA in the cortex. However, acute administration of PCP induced no changes of 5-HT and 5-HIAA levels in other brain areas investigated. On the other hand, chronic treatment of PCP produced a significant increase the striatal 5-HT and 5-HIAA levels by about 30% and 20%, respectively. These increased levels were gradually returned to the control levels, and there was no difference of these levels between the control group and the 48 hr withdrawal group. The changes of 5-HT level in the hypothalamus were similar to those in the striatum. These results suggest that the pharmacological actions of PCP and tolerance development to PCP may be related to the functional changes of serotonergic neuronal activity.  相似文献   

5.
The content of serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), monoamine oxidase (MAO) activity and kinetic parameters (K(m) and Vmax) for the reaction of 5-HT deamination, were examined in various regions of the rat brain after repeated presentation of a contextual stimulus. Habituation to the stimulus was accompanied by an increase of 5-HT metabolism and active transport of 5-HIAA in the amygdala, striatum and midbrain, while these changes were not found in the prefrontal cortex and hippocampus. Kinetic studies have revealed that the enhancement of 5-HT deamination by MAO in the brain structures was mediated by different catalytic mechanisms. A significant decrease in K(m) value for 5-HT deamination in the amygdala indicated an increase in the affinity of enzyme towards 5-HT. In the striatum the enhanced MAO activity was provided by increasing maximal rate of 5-HT deamination. It is concluded that an activation of presynaptic mechanisms of the serotonergic transmission in the amygdala and striatum is involved in the inhibition of biological significance and attention to repeated presentation of stimulus.  相似文献   

6.
The serotonin (5-HT) and 5-hydroxyindoleacttic acid (5-HIAA) levels and 5-HT turnover were studies in the brain stem of warm- (+30 degrees C) and cold- (+6 degrees C) acclimated golden hamsters, exposed for 3 hours to temperatures of +6 degrees C, +30 degrees C and +37 degrees C, respectively. In war-acclimated hamsters kept under conditions the 5-HT level in the brain did not change significantly during the year. The 5-HIAA level was slightly higher in the winter. The 5-HT turnover varied within limits of 0.071 to 0.180 mug/g/hour-1. Three hours' exposure of warm-acclimated golden hamsters to cold (6 degrees C) increased the concentrations of 5-HT and 5-HIAA and the 5-HT turnover in the brain. After long-term adaptation to cold (6 degrees C) the 5-HT level, and the 5-HT turnover returned to the original level. Three hours' exposure of golden hamsters to higher environmental temperatures (warm-acclimated individuals to 37 degrees C and cold-acclimated individuals to 30 degrees C) also increased the 5-HT turnover. The concentrations of 5-HT and 5-HIAA increased in cold-acclimated golden hamsters exposed to 30 degrees C and was not changed in warm-acclimated ones, exposed to 37 degrees C. Although the elevated temperatures induce greater changes in serotonin metabolism than lowered temperatures, the serotonin pathways in the brain do not seem to be affected by short-term temperature changes specifically. The findings are rather indicative that changes in 5-HT turnover may be the primary reaction to stressful conditions.  相似文献   

7.
《Life sciences》1995,57(19):PL285-PL292
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with sahne daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day sahne injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with sahne on the 6th day. Plasma total and free tryptophan were not altered hi these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day sahne injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.  相似文献   

8.
Using a specific and sensitive high pressure liquid chromatographic technique for the measurement of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and tryptophan (TRP), we found that there were no changes in 5-HT or 5-HIAA in the rat cortex when left in situ for 6 h at room temperature or 24 h at 4 degrees C. Only a minimal 14% increase in 5-HT was observed after 24 h at 4 degrees C in the striatum of the same animals. Concentrations of TRP, however, were increased significantly in both brain regions by these postmortem delay procedures. A second study revealed that there were significant regional 5-HT and 5-HIAA concentration differences within the cerebral cortex. The frontal cortex was shown to have the highest concentrations of 5-HT and 5-HIAA. Further, within the frontal cortex, 5-HIAA levels varied, showing apparent progressive rostral to caudal increases. 5-HT concentrations, however, remained constant within the frontal cortex. These results are discussed in reference to the conflicting reports of the previous human suicide and postmortem studies.  相似文献   

9.
The pharmacological effects of GABA-related drugs were studied on the serotonin (5-HT) and 5-hydroxyindole-acetic acid (5-HIAA) contents of various regions of the rat brain. These effects were examined in the nuclei raphe dorsalis, magnus and centralis and in structures receiving a dense serotonin innervation such as the habenula complex and subcommissural organ. The GABA agonist, muscimol, increased the 5-HT contents and reduced 5-HIAA levels in structures containing serotoninergic terminals suggesting an inhibitory effect of GABA on the firing of serotoninergic neurons with concomitant reduction of 5-HT utilisation. In contrast, the GABA antagonist, bicuculline, probably stimulated 5-HT turnover since its intraperitoneally administration produced significant increase of 5-HT and/or 5-HIAA levels in the same brain regions. These data are in agreement with a transsynaptic inhibitory control of GABA on serotoninergic neurons. Drugs which inhibit the GABA catabolism such as amino-oxyacetic acid or gamma-vinyl-GABA and which should elevate GABA levels in the synaptic gap were capable of increasing or decreasing the 5-HT and the 5-HIAA levels depending on the experimental conditions. These results suggest that several processes are probably involved in the control of serotoninergic neurons by GABA in the rat brain. Among them, an intracellular effect of GABA on 5-HT metabolism might well occur in cells containing both GABA and 5-HT.  相似文献   

10.
Omega-3 (n-3) fatty acid deficiency, elevated inflammatory signaling, and central serotonin (5-HT) turnover have separately been implicated in the pathophysiology of major depressive disorder (MDD). In the present study we investigated the interrelationship between n-3 fatty acid status, pro-inflammatory signaling activity, and central 5-HT turnover in vivo. Rats were fed diets with or without the n-3 fatty acid precursor α-linolenic acid (ALA) during perinatal development (E0-P100), and a subset of rats fed the ALA− diet were switched to the ALA+ diet post-weaning (P21-P100, repletion). In adulthood (P100), plasma interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFα), and C-reactive protein (CRP) levels were measured. Additionally, indices of liver n-6 fatty acid biosynthesis, erythrocyte fatty acid composition, and regional brain monoamine turnover were determined. Indices of liver delta-6 desaturase activity were up-regulated in n-3-deficient rats, and were associated with greater erythrocyte membrane arachidonic acid (AA, 20:4 n-6) composition. Plasma IL-6 (p=0.001), TNFα (p=0.02), and CRP (p=0.001) concentrations were significantly greater in n-3-deficient rats relative to controls. The 5-HIAA/5-HT ratio was significantly greater in frontal cortex, hypothalamus, and ventral striatum of n-3-deficient rats relative to controls. Changes in membrane n-3 and n-6 fatty acid composition, elevations in plasma IL-6 and TNFα, and increased central 5-HT turnover were all prevented by normalization of n-3 fatty acid status. Erythrocyte docosahexaenoic acid (DHA, 22:6 n-3) was inversely correlated, and AA and the AA/DHA and AA/eicosapentaenoic acid ratios were positively correlated, with plasma IL-6, TNFα, and CRP levels. Plasma IL-6 levels were positively correlated with 5-HIAA/5-HT ratios in all brain regions. These preclinical data provide evidence for a functional link between n-3 fatty acid deficiency, elevated peripheral inflammatory signaling, and increased central 5-HT turnover.  相似文献   

11.
The effects of L-tryptophan (50 mg/kg i.p.) on extracellular concentrations of tryptophan and the 5-hydroxytryptamine (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in the rat striatum and cerebellum, regions with rich and poor 5-HT innervation, respectively. Determinations were on perfusates from dialysis probes in the brains of conscious, freely moving rats. The pharmacokinetic profiles of dialysate tryptophan after tryptophan load (peak concentration, time to peak concentration, area under curve, and half-life) in the two regions did not differ significantly. The dialysate 5-HIAA concentration in the striatum rose two- to threefold after the administration of tryptophan. Therefore, as 5-HIAA was undetectable in the cerebellum either before or after the administration of tryptophan, the increase of 5-HIAA in the striatum is unlikely to depend appreciably on its production within the cerebral vasculature or outside the brain or on its entering the striatum through a blood-brain barrier damaged by placement of the dialysis probe. Overall, the findings strengthen previous evidence that extracellular 5-HIAA concentrations determined by cerebral dialysis are a valid measure of the metabolism of 5-HT of brain neuronal origin.  相似文献   

12.
A J Dunn 《Life sciences》1988,42(19):1847-1853
Brain concentrations of tryptophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and plasma amino acids were measured after 15 or 30 minutes of intermittent footshock. Footshock treatment significantly decreased the content of 5-HT in prefrontal cortex and hypothalamus, but not brainstem at 15 min, but the decreases were reversed by 30 min. 5-HIAA, the major catabolite of 5-HT, increased in prefrontal cortex after 15 min, and in prefrontal cortex and hypothalamus after 30 min footshock. 5-HIAA:5-HT ratios were increased at both timepoints in all three brain regions. Concomitant changes in the ratios of 3,4-dihydroxyphenylacetic acid (DOPAC) to dopamine and 3-methoxy,-4-hydroxyphenylethyleneglycol (MHPG) to norepinephrine were also observed. Brain concentrations of tryptophan increased progressively during the footshock in all three brain regions. Plasma concentrations of both tryptophan and tyrosine were also significantly increased, while those of histidine and lysine were decreased. It is possible that the stress-related changes in 5-HT metabolism are due to increased plasma tryptophan, in turn causing increased brain tryptophan and 5-HT synthesis. However, the transient decreases in 5-HT suggest a footshock-induced increase of 5-HT release, depleting existing stores of 5-HT, that are replenished by the increased systemic availability of tryptophan.  相似文献   

13.
The concentration of tryptophan in serum, and the levels of tryptophan, serotonin (5-HT), and 5-hydroxyindole-acetic acid (5-HIAA) in brain are substantially reduced in rats that consume for 6 weeks a diet in which corn is the only source of protein. Single injections of L-tryptophan (25, 50, or 100 mg/kg) cause dose-related increases in brain tryptophan, 5-HT, and 5-HIAA in corn-fed animals. At each dose, brain tryptophan content rises to a proportionately greater extent in corn-fed rats than in well-nourished controls, even though serum tryptophan concentrations attain higher levels in controls. This difference may reflect the greatly reduced serum concentrations in corn-fed rats of other large neutral amino acids that compete with tryptophan for uptake into the brain (tyrosine, phenylalanine, leucine, isoleucine, and valine). However, the substantial decrease in serum albumin levels also diminishes the binding of tryptophan to serum albumin; thus it is not yet possible to state which of these changes is responsible for the much greater increments in brain tryptophan observed in corn-fed rats after tryptophan injection. The fact that tryptophan administration rapidly restores brain 5-hydroxyindole levels in corn-fed animals suggests that the reductions in 5-HT and 5-HIAA levels associated with this type of malnutrition may be largely caused by inadequate availability of substrate.  相似文献   

14.
We used in vivo microdialysis in awake rats to test the hypothesis that intravenous morphine increases serotonin (5-HT) release within the rostral ventromedial medulla (RVM). We also injected morphine into various sites along the rostrocaudal extent of the periaqueductal gray (PAG), and examined the extent of its diffusion to the RVM. Intravenous morphine (3.0 mg/kg) produced thermal antinociception and increased RVM dialysate 5-HT, 5-hydroxyindole acetic acid (5-HIAA), and homovanillic acid (HVA) in a naloxone-reversible manner. As neither PAG microinjection of morphine (5 micro g/0.5 micro L) nor RVM administration of fentanyl or d-Ala(2),NMePhe(4),Gly-ol(5)]enkephalin (DAMGO) increased RVM 5-HT, we were unable to determine the precise site of action of morphine. Surprisingly, peak morphine levels in the RVM were higher after microinjection into the caudal PAG as compared to either intravenous injection or microinjection into more rostral sites within the PAG. Naloxone-precipitated withdrawal in morphine-tolerant rats not only increased extracellular 5-HT in the RVM, but also dopamine (DA) and HVA. We conclude that substantial amounts of morphine diffuse from the PAG to the RVM, and speculate that opioid receptor interactions at multiple brain sites mediate the analgesic effects of PAG morphine. Further studies will be required to elucidate the contribution of 5-HT and DA release in the RVM to opioid analgesia and opioid withdrawal.  相似文献   

15.
This study investigates, using in vivo microdialysis, the role of serotonin2A (5-HT2A) and 5-HT(2B/2C) receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens (NAC) and the striatum of halothane-anesthetized rats. Following DRN stimulation (300 microA, 1 ms, 20 Hz, 15 min) DA release was enhanced in the NAC and reduced in the striatum. The 5-HT2A antagonist SR 46349B (0.5 mg/kg) and the mixed 5-HT(2A/2B/2C) antagonist ritanserin (0.63 mg/kg) significantly reduced the effect of DRN stimulation on DA release in the NAC but not in the striatum. DA responses to DRN stimulation were not affected by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg) in either region. None of these compounds was able to modify the enhancement of DOPAC and 5-HIAA outflow induced by DRN stimulation in either the NAC or the striatum. Finally, in both brain regions basal DA release was significantly increased only by SB 206553. These results indicate that 5-HT2A but not 5-HT(2B/2C) receptors participate in the facilitatory control exerted by endogenous 5-HT on accumbal DA release. Conversely, 5-HT(2B/2C) receptors tonically inhibit basal DA release in both brain regions.  相似文献   

16.
By the use of the brain micro-dialysis technique combined with HPLC, the changes in the extracellular levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and a serotonin(5-HT) metabolite, 5-hydroxyindoleacetic acid (5-HIAA) were examined in the rat striatum before and after intracerebral injection of a vehicle or (6R)-l-erythro-tetrahydrobiopterin (6R-BH4), the natural form of the cofactor for the tryrosine hydroxylase and tryptophan hydroxylase. No apparent change after the 6R-BH, treatment was found in the levels of DA, DOPAC, HVA and 5-HIAA in the striatal dialysate. In contrast, the levels of total biopterin in both the operated (dialysis probe-implanted) and unoperated striatum of 6R-BH4-treated rats increased by 23- and 93-fold, respectively, when compared with those of the control, vehicle-treated rats. The results indicate that increased levels of the tetrahydrobiopterin cofactor may not affect the release of DA and the extracellular level of DA and 5-HT metabolites in the physiologically normal brain.  相似文献   

17.
Some studies have suggested that disorders in the peripheral and central metabolism of serotonin (5-HT) may play a role in the pathophysiology of autistic disorder. This study examines the whole blood concentrations of 5-HT and 5-hydroxy-indoleacetic acid (5-HIAA) in baseline conditions and during a challenge with L-5-OH-tryptophane (5-HTP; 4 mg/kg in non enteric-coated tablets), the precursor of 5-HT, in a study group of 18 male, post-pubertal, Caucasian autistic patients (age 13-19 y.; I.Q.>55) and 20 matched healthy volunteers. In baseline conditions, no significant differences in 5-HT or 5-HIAA levels could be found between autistic youngsters and normal controls. 5-HTP administration significantly increased the levels of 5-HT in autistic youngsters but not in normal controls. Following 5-HTP challenge the 5-HT levels were significantly higher in autistic patients than in healthy volunteers. After challenge with 5-HTP, no significant differences were found in the concentrations of 5-HIAA or the test substance between autistic youngsters and normal controls. Differences in the peripheral metabolism of 5-HT which may not be observed in baseline conditions but which became clear after loading with 5-HTP, suggest that an increased synthesis of 5-HT from its precursor 5-HTP might be a one factor responsible for differences in the serotonergic system between autistic post-pubertal youngsters and normal controls.  相似文献   

18.
J A Nielsen  C A Johnston 《Life sciences》1982,31(25):2847-2856
Assays capable of measuring picomole quantities of dopamine (DA), 5-hydroxytryptamine (5-HT), several of their precursors and metabolites concurrently within 25 minutes were developed utilizing high performance liquid chromatography with electrochemical detection (LCEC). Several parameters of the LCEC were altered in order to separate the compounds while maintaining a short assay time. The final LCEC systems demonstrated biological utility in that the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were detected in rat cerebrospinal fluid; in addition to these compounds, DA and 5-HT were measurable in the striatum, hypothalamus and median eminence of the rat brain. Pargyline decreased the concentrations of DOPAC, HVA and 5-HIAA and increased the 5-HT concentration in all three brain regions, and increased the DA concentration in the striatum. Probenecid increased all three acid metabolite concentrations in the hypothalamus and median eminence, while only the HVA and 5-HIAA concentrations were increased in the striatum. The DA and 5-HT concentrations were unaltered. The LCEC methods described in this paper should be useful in elucidating the mechanisms and roles of 5-HT and DA neurons in experimental paradigms of biological interest.  相似文献   

19.
The effect of the racemic mixture of 3,4-methylenedioxymethamphetamine (MDMA) on the synthesis of dopamine in the terminals of nigrostriatal and mesolimbic neurons was estimated by measuring the accumulation of 3,4-dihydroxyphenylalanine (DOPA) in the striatum and nucleus accumbens 30 min following the administration of the L-aromatic amino acid decarboxylase inhibitor, 3-hydroxybenzylhydrazine. MDMA produced an increase in DOPA accumulation in the striatum which was greater in magnitude and longer in duration than that in the nucleus accumbens. Although the concentrations of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in both the striatum and nucleus accumbens were reduced 3 h following an injection of MDMA (20 mg/kg), 5-HT and 5-HIAA concentrations were significantly reduced only in the striatum 7 days after the administration of MDMA. Pretreatment with a 5-HT2 antagonist, ketanserin, significantly attenuated the reduction in 5-HT concentration in the striatum 3 h following MDMA administration and completely blocked 5-HT depletion at 7 days post administration. Moreover, ketanserin completely blocked MDMA-induced DOPA accumulation in the striatum. The results obtained in these studies suggest that MDMA activates nigrostriatal dopaminergic pathways via 5-HT2 receptors. In addition, these data are supportive of the hypothesis that dopamine plays a role in MDMA-induced 5-HT depletion.  相似文献   

20.
Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in rat brain were analysed 24 hours after 7-, 15-, 29- days lithium hydroxybutyrate (LH) injections (10 mg/kg daily). After 7 days the drug reduced 5-HT in hypothalamus and 5-HIAA in the mid brain by 35%. After 15 days LH decreased 5-HT in striatum, hypothalamus by 32 and 17% and 5-HIAA in thalamus, hypothalamus by 28 and 44% respectively. After 29 days LH diminished 5-HT in striatum, hippocampus, amygdala by 24, 29 and 32% and 5-HIAA--in hypothalamus by 42%. The role of adaptative changes and stabilization processes in the central serotoninergic system in mechanism of LH psychotropic effects is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号