首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
We tested the hypothesis that sympathoadrenal activity in humans is low during spaceflight and that this effect can be simulated by head-down bed rest (HDBR). Platelet norepinephrine and epinephrine were measured as indexes of long-term changes in sympathoadrenal activity. Ten normal healthy subjects were studied before and during HDBR of 2-wk duration, as well as during an ambulatory study period of a similar length. Platelet norepinephrine concentrations (half-life = 2 days) were studied in five cosmonauts, 2 wk before launch, within 12 h after landing after 11-12 days of flight, and at least 2 wk after return to Earth. Because of the long half-life of platelet norepinephrine, data obtained early after landing would still reflect the microgravity state. Platelet norepinephrine decreased markedly during HDBR (P < 0.001), whereas there were no significant changes when subjects were ambulatory. Platelet epinephrine did not change during HDBR. During microgravity, platelet norepinephrine and epinephrine increased in four of the five cosmonauts. Platelet norepinephrine concentrations expressed in percentage of preflight and pre-HDBR values, respectively, were significantly different during microgravity compared with HDBR [153 +/- 28% (mean +/- SE) vs. 60 +/- 6%, P < 0.004]. Corresponding values for platelet epinephrine were also significant (293 +/- 85 vs. 90 +/- 12%, P < 0.01). The mechanism of the platelet norepinephrine and epinephrine response during spaceflight flight is most likely related to the concomitant decrease in plasma volume. HDBR cannot be applied to simulate changes in sympathoadrenal activity during microgravity.  相似文献   

2.
Physical inactivity induced by head-down bed rest (HDBR) affects body composition (BC). Leptin is involved in BC regulation by acting on fuel homeostasis. We investigated whether leptin and counterregulatory hormone levels are affected by a 7-day HDBR. Fasting blood was sampled daily (0700) in males (n = 8) and on alternating days in females (n = 8) for measurements of leptin, insulin, norepinephrine (NE), epinephrine (Epi), growth hormone (GH), cortisol, nonesterified fatty acid (NEFA), and glucose. BC was measured by H(2)(18)O dilution. Energy intake (men 10.5 +/- 0.2 MJ/day, women 7.9 +/- 0.3 MJ/day) and BC were unchanged by HDBR. Increased levels of leptin (men 40%, P = 0.003; women 20%, P = 0. 050), insulin (men 34%, P = 0.018; women 25%, P = 0.022), and the insulin-to-glucose ratio (men 30%, P = 0.049; women 25%, P = 0.031) were noted. GH, NE, Epi, and cortisol levels were unaltered. NEFA dropped in both sexes, but glucose decreased only in women. In conclusion, HDBR increased leptin levels independently of stress response, changes in fat mass, energy intake, or gender. These changes were correlated to the insulin-resistance development in men. Further analyses are required, but the results have to be considered for longer HDBR periods with 1) the well-described drop in energy intake and 2) the BC changes.  相似文献   

3.
Acute increases of the key counterregulatory hormone epinephrine can be modified by a number of physiological and pathological conditions in type 1 diabetic patients (T1DM). However, it is undecided whether the physiological effects of epinephrine are also reduced in T1DM. Therefore, the aim of this study was to determine whether target organ (liver, muscle, adipose tissue, pancreas, cardiovascular) responses to epinephrine differ between healthy subjects and T1DM patients. Thirty-four age- and weight-matched T1DM (n = 17) and healthy subjects (n = 17) underwent two randomized, single-blind, 2-h hyperinsulinemic euglycemic clamp studies with (Epi) and without epinephrine infusion. Muscle biopsy was performed at the end of each study. Epinephrine levels during Epi were similar in all groups (4,039 +/- 384 pmol/l). Glucose (5.3 +/- 0.06 mmol/l) and insulin levels (462 +/- 18 pmol/l) were also similar in all groups during the glucose clamps. Glucagon responses to Epi were absent in T1DM and significantly reduced compared with healthy subjects. Endogenous glucose production during the final 30 min was significantly greater during Epi in healthy subjects compared with T1DM (8.4 +/- 1.3 vs. 4.4 +/- 0.6 micromol.kg(-1).min(-1), P = 0.041). Glucose uptake showed almost a twofold greater decrease with Epi in healthy subjects vs. T1DM (Delta31 +/- 2 vs. Delta17 +/- 2 nmol.kg(-1).min(-1), respectively, P = 0.026). Glycerol, beta-hydroxybutyrate, and nonesterified fatty acid (NEFA) all increased significantly more in T1DM compared with healthy subjects. Increases in systolic blood pressure were greater in healthy subjects, but reductions of diastolic blood pressure were greater in T1DM patients with Epi. Reduction of glycogen synthase was significantly greater during epinephrine infusion in T1DM vs. healthy subjects. In summary, despite equivalent epinephrine, insulin, and glucose levels, changes in glucose flux, glucagon, and cardiovascular responses were greater in healthy subjects compared with T1DM. However, T1DM patients had greater lipolytic responses (glycerol and NEFA) during Epi. Thus we conclude that there is a spectrum of significant in vivo physiological differences of epinephrine action at the liver, muscle, adipose tissue, pancreas, and cardiovascular system between T1DM and healthy subjects.  相似文献   

4.
The amplitude of low-frequency (LF) oscillations of heart rate (HR) usually reflects the magnitude of sympathetic activity, but during some conditions, e.g., physical exercise, high sympathetic activity results in a paradoxical decrease of LF oscillations of HR. We tested the hypothesis that this phenomenon may result from a feedback inhibition of sympathetic outflow caused by circulating norepinephrine (NE). A physiological dose of NE (100 ng.kg(-1).min(-1)) was infused into eight healthy subjects, and infusion was continued after alpha-adrenergic blockade [with phentolamine (Phe)]. Muscle sympathetic nervous activity (MSNA) from the peroneal nerve, LF (0.04-0.15 Hz) and high frequency (HF; 0.15-0.40 Hz) spectral components of HR variability, and systolic blood pressure variability were analyzed at baseline, during NE infusion, and during NE infusion after Phe administration. The NE infusion increased the mean blood pressure and decreased the average HR (P < 0.01 for both). MSNA (10 +/- 2 vs. 2 +/- 1 bursts/min, P < 0.01), LF oscillations of HR (43 +/- 13 vs. 35 +/- 13 normalized units, P < 0.05), and systolic blood pressure (3.1 +/- 2.3 vs. 2.0 +/- 1.1 mmHg2, P < 0.05) decreased significantly during the NE infusion. During the NE infusion after PHE, average HR and mean blood pressure returned to baseline levels. However, MSNA (4 +/- 2 bursts/min), LF power of HR (33 +/- 9 normalized units), and systolic blood pressure variability (1.7 +/- 1.1 mmHg2) remained significantly (P < 0.05 for all) below baseline values. Baroreflex gain did not change significantly during the interventions. Elevated levels of circulating NE cause a feedback inhibition on sympathetic outflow in healthy subjects. These inhibitory effects do not seem to be mediated by pressor effects on the baroreflex loop but perhaps by a presynaptic autoregulatory feedback mechanism or some other mechanism that is not prevented by a nonselective alpha-adrenergic blockade.  相似文献   

5.
Although orthostatic hypotension is a common clinical syndrome after spaceflight and its ground-based simulation model, 6 degrees head-down bed rest (HDBR), the pathophysiology remains unclear. The authors' hypothesis that a decrease in sympathetic nerve activity is the major pathophysiology underlying orthostatic hypotension after HDBR was tested in a study involving 14-day HDBR in 22 healthy subjects who showed no orthostatic hypotension during 15-min 60 degrees head-up tilt test (HUT) at baseline. After HDBR, 10 of 22 subjects demonstrated orthostatic hypotension during 60 degrees HUT. In subjects with orthostatic hypotension, total activity of muscle sympathetic nerve activity (MSNA) increased less during the first minute of 60 degrees HUT after HDBR (314% of resting supine activity) than before HDBR (523% of resting supine activity, P < 0.05) despite HDBR-induced reduction in plasma volume (13% of plasma volume before HDBR). The postural increase in total MSNA continued during several more minutes of 60 degrees HUT while arterial pressure was maintained. Thereafter, however, total MSNA was paradoxically suppressed by 104% of the resting supine level at the last minute of HUT (P < 0.05 vs. earlier 60 degrees HUT periods). The suppression of total MSNA was accompanied by a 22 +/- 4-mmHg decrease in mean blood pressure (systolic blood pressure <80 mmHg). In contrast, orthostatic activation of total MSNA was preserved throughout 60 degrees HUT in subjects who did not develop orthostatic hypotension. These data support the hypothesis that a decrease in sympathetic nerve activity is the major pathophysiological factor underlying orthostatic hypotension after HDBR. It appears that the diminished sympathetic activity, in combination with other factors associated with HDBR (e.g., hypovolemia), may predispose some individuals to postural hypotension.  相似文献   

6.
We studied vagally mediated carotid baroreceptor-cardiac reflexes in 11 healthy men before, during, and after 30 days of 6 degrees head-down bed rest to test the hypothesis that baroreflex malfunction contributes to orthostatic hypotension in this model of simulated microgravity. Sigmoidal baroreflex response relationships were provoked with ramped neck pressure-suction sequences comprising pressure elevations to 40 mmHg followed by serial R-wave-triggered 15-mmHg reductions to -65 mmHg. Each R-R interval was plotted as a function of systolic pressure minus the neck chamber pressure applied during the interval. Compared with control measurements, base-line R-R intervals and the minimum, maximum, range, and maximum slope of the R-R interval-carotid pressure relationships were reduced (P less than 0.05) from bed rest day 12 through recovery day 5. Baroreflex slopes were reduced more in four subjects who fainted during standing after bed rest than in six subjects who did not faint (-1.8 +/- 0.7 vs. -0.3 +/- 0.3 ms/mmHg, P less than 0.05). There was a significant linear correlation (r = 0.70, P less than 0.05) between changes of baroreflex slopes from before bed rest to bed rest day 25 and changes of systolic blood pressure during standing after bed rest. Although plasma volume declined by approximately 15% (P less than 0.05), there was no significant correlation between reductions of plasma volume and changes of baroreflex responses. There were no significant changes of before and after plasma norepinephrine or epinephrine levels before and after bed rest during supine rest or sitting.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Changes of plasma hormone levels were investigated in human subjects after exposure to physical exercise (WL) and insulin induced hypoglycemia (ITT) during apace flight or after head down bed rest (HDBR). Exaggerated responses of plasma epinephrine (EPI), norepinephrine (NE) and aldosterone (ALD) were observed after WL during space flight as compared to preflight response. Hypoglycemia during space flight induced attenuated responses of EPI, NE and augmented response of ALD. Exposure to WL during HDBR was followed by significantly exaggerated responses of plasma EPI, NE, ALD, PRA and cortisol. In HDBR the responses of plasma EPI, NE and cortisol were reduced and PRA response was exaggerated during ITT. These data indicate that hormonal responses to ITT and WL are similar at real and simulated microgravity.  相似文献   

8.
The rate of hepatic glucose production (R(a) glucose) of rainbow trout (Oncorhynchus mykiss) was measured in vivo by continuous infusion of [6-(3)H]glucose and in vitro on isolated hepatocytes to examine the role of epinephrine (Epi) in its regulation. By elevating Epi concentration and/or blocking beta-adrenoreceptors with propranolol (Prop), our goals were to investigate the mechanism for Epi-induced hyperglycemia to determine the possible role played by basal Epi concentration in maintaining resting R(a) glucose and to assess indirect effects of Epi in the intact animal. In vivo infusion of Epi caused hyperglycemia (3.75 +/- 0.16 to 8.75 +/- 0.54 mM) and a twofold increase in R(a) glucose (6.57 +/- 0.79 to 13.30 +/- 1.78 micromol. kg(-1). min(-1), n = 7), whereas Prop infusion decreased R(a) from 7.65 +/- 0.92 to 4.10 +/- 0.56 micromol. kg(-1). min(-1) (n = 10). Isolated hepatocytes increased glucose production when treated with Epi, and this response was abolished in the presence of Prop. We conclude that Epi-induced trout hyperglycemia is entirely caused by an increase in R(a) glucose, because the decrease in the rate of glucose disappearance normally seen in mammals does not occur in trout. Basal circulating levels of Epi are involved in maintaining resting R(a) glucose. Epi stimulates in vitro glucose production in a dose-dependent manner, and its effects are mainly mediated by beta-adrenoreceptors. Isolated trout hepatocytes produce glucose at one-half the basal rate measured in vivo, even when diet, temperature, and body size are standardized, and basal circulating Epi is responsible for part of this discrepancy. The relative increase in R(a) glucose after Epi stimulation is similar in vivo and in vitro, suggesting that indirect in vivo effects of Epi, such as changes in hepatic blood flow or in other circulating hormones, do not play an important role in the regulation of glucose production in trout.  相似文献   

9.
Head-down bed rest (HDBR) increases plasma levels of atrial natriuretic peptide (ANP) and decreases norepinephrine levels. We previously demonstrated that ANP promotes lipid mobilization and utilization, an effect independent of sympathetic nervous system activation, when infused into lean healthy men at pharmacological doses. The purpose of the present study was to demonstrate that a physiological increase in ANP contributes to lipid mobilization and oxidation in healthy young men. Eight men were positioned for 4 h in a sitting (control) or in a HDBR position. Indexes of lipid mobilization and hormonal changes were measured in plasma. Extracellular glycerol, an index of lipolysis, was determined in subcutaneous adipose tissue (SCAT) with a microdialysis technique. A twofold increase in plasma ANP concentration was observed after 60 min of HDBR, and a plateau was maintained thereafter. Plasma norepinephrine decreased by 30-40% during HDBR, while plasma insulin and glucose levels did not change. The level of plasma nonesterified fatty acids was higher during HDBR. SCAT lipolysis, as reflected by interstitial glycerol, as well as interstitial cGMP, the second messenger of the ANP pathway, increased during HDBR. This was associated with an increase in blood flow observed throughout HDBR. Significant changes in respiratory exchange ratio and percent use of lipid and carbohydrate were seen only after 3 h of HDBR. Thus the proportion of lipid oxidized increased by 40% after 3 h of HDBR. The rise in plasma ANP during HDBR was associated with increased lipolysis in SCAT and whole body lipid oxidation. In this physiological setting, independent of increasing catecholamines, our study suggests that ANP contributes to lipid mobilization and oxidation in healthy young men.  相似文献   

10.
Mild lower-body negative pressure (LBNP) has been utilized to selectively unload cardiopulmonary baroreceptors, but there is evidence that arterial baroreceptors can be transiently unloaded after the onset of mild LBNP. In this paper, a black box mathematical model for the prediction of diastolic blood pressure (DBP) variability from multiple inputs (systolic blood pressure, R-R interval duration, and central venous pressure) was applied to interpret the dynamics of blood pressure maintenance under the challenge of LBNP and in long-duration, head-down bed rest (HDBR). Hemodynamic recordings from seven participants in the WISE (Women's International Space Simulation for Exploration) Study collected during an experiment of incremental LBNP (-10 mmHg, -20 mmHg, -30 mmHg) were analyzed before and on day 50 of a 60-day-long HDBR campaign. Autoregressive spectral analysis focused on low-frequency (LF, ~0.1 Hz) oscillations of DBP, which are related to fluctuations in vascular resistance due to sympathetic and baroreflex regulation of vasomotor tone. The arterial baroreflex-related component explained 49 ± 13% of LF variability of DBP in spontaneous conditions, and 89 ± 9% (P < 0.05) on day 50 of HDBR, while the cardiopulmonary baroreflex component explained 17 ± 9% and 12 ± 4%, respectively. The arterial baroreflex-related variability was significantly increased in bed rest also for LBNP equal to -20 and -30 mmHg. The proposed technique provided a model interpretation of the proportional effect of arterial baroreflex vs. cardiopulmonary baroreflex-mediated components of blood pressure control and showed that arterial baroreflex was the main player in the mediation of DBP variability. Data during bed rest suggested that cardiopulmonary baroreflex-related effects are blunted and that blood pressure maintenance in the presence of an orthostatic stimulus relies mostly on arterial control.  相似文献   

11.
Astronauts usually work under much mental stress. However, it is unclear how and whether or not an exposure to microgravity affects physiological response to mental stress in humans. To examine effects of microgravity on vasomotor sympathetic and peripheral vasodilator responses to mental stress, we performed 10 min of mental arithmetic (MA) before and after 14 days of 6 degrees head-down bed rest (HDBR), a ground-based simulation of spaceflight. Total muscle sympathetic nerve activity (MSNA, measured by microneurography) slightly increased during MA before HDBR, and this increase was augmented after HDBR. Calf blood flow (measured by venous occlusion plethysmography) increased and calf vascular resistance (calculated by dividing mean blood pressure by calf blood flow) decreased during MA before HDBR, but these responses were abolished after HDBR. Increases in heart rate and mean blood pressure during MA were not different between before and after HDBR. These findings suggest that HDBR augmented vasomotor sympathoexcitation but attenuated vasodilatation in the calf muscle in response to mental stress.  相似文献   

12.
Space-flight and its ground-based simulation model, 6 degrees head-down bed rest (HDBR), cause cardiovascular deconditioning in humans. Because sympathetic vasoconstriction plays a very important role in circulation, we examined whether HDBR impairs alpha-adrenergic vascular responsiveness to sympathetic nerve activity. We subjected eight healthy volunteers to 14 days of HDBR and before and after HDBR measured calf muscle sympathetic nerve activity (MSNA; microneurography) and calf blood flow (venous occlusion plethysmography) during sympathoexcitatory stimulation (rhythmic handgrip exercise). HDBR did not change the increase in total MSNA (P = 0.97) or the decrease in calf vascular conductance (P = 0.32) during exercise, but it did augment the increase in calf vascular resistance (P = 0.0011). HDBR augmented the transduction gain from total MSNA into calf vascular resistance, assessed as the least squares linear regression slope of vascular resistance on total MSNA (0.05 +/- 0.02 before HDBR, 0.20 +/- 0.06 U.min-1.burst-1 after HDBR, P = 0.0075), but did not change the transduction gain into calf vascular conductance (P = 0.41). Our data indicate that alpha-adrenergic vascular responsiveness to sympathetic nerve activity is preserved in the supine position after HDBR in humans.  相似文献   

13.
Increased epinephrine (Epi) and norepinephrine (NE) production plays an important role in fetal adaptation to reduced oxygen and/or nutrient availability, inhibiting insulin secretion and slowing growth to support more essential processes. To assess the importance of hypoinsulinemia for the efficacy of catecholamines, normoinsulinemia was restored by intravenous insulin infusion (0.18 mU. kg(-1). min(-1)) during prolonged infusion of either Epi (0.25-0. 35 microgram. kg(-1). min(-1) for 12 days, n = 7) or NE (0.5-0.7 microgram. kg(-1). min(-1) for 7 days, n = 6) into normoxemic fetuses in twin-pregnant ewes, from 125-127 days of gestation. Insulin infusion for 8 days during Epi infusion or for 4 days during NE infusion decreased arterial blood pressure, O(2) content, and plasma glucose, but increased heart rate significantly (all P <0.05), despite continuation of Epi or NE infusion. Cessation of insulin infusion reversed these changes. Estimated growth of fetuses infused with insulin during Epi or NE infusion (55 +/- 13.9 and 83 +/- 15.2 g/day) did not differ significantly from that of untreated controls (72 +/- 15.4 g/day, n = 6). Growth of selected muscles and hindlimb bones was not altered either. Restoration of normoinsulinemia evidently counteracts the redistribution of metabolic activity and decreased anabolism brought about by Epi or NE in the fetus. Inhibition of insulin secretion by Epi and NE, therefore, appears essential for the efficacy of catecholamine action in the fetus.  相似文献   

14.
The sympathetic nervous system (SNS) plays an important role in the regulation of energy expenditure. However, whether tonic SNS activity contributes to resting metabolic rate (RMR) in healthy adult humans is controversial, with the majority of studies showing no effect. We hypothesized that an intravenous propranolol infusion designed to achieve complete beta-adrenergic blockade would result in a significant acute decrease in RMR in healthy adults. RMR (ventilated hood, indirect calorimetry) was measured in 29 healthy adults (15 males, 14 females) before and during complete beta-adrenergic blockade documented by plasma propranolol concentrations > or =100 ng/ml, lack of heart rate response to isoproterenol, and a plateau in RMR with increased doses of propranolol. Propranolol infusion evoked an acute decrease in RMR (-71 +/- 11 kcal/day; -5 +/- 0.7%, P < 0.0001), whereas RMR was unchanged from baseline levels during a saline control infusion (P > 0.05). The response to propranolol differed from the response to saline control (P < 0.01). The absolute and percent decreases in RMR with propranolol were modestly related to baseline plasma concentration of norepinephrine (r = 0.38, P = 0.05; r = 0.44, P = 0.02, respectively). These findings provide direct evidence for the concept of tonic sympathetic beta-adrenergic support of RMR in healthy nonobese adults.  相似文献   

15.
This paper reports the effect of 12 mo of intense endurance exercise training on the plasma catecholamine response to exercise in 11 male patients [aged 50 +/- 8 yr (mean +/- SD)] with coronary artery disease. A substantial adaptation to training was attained as evidenced by a 42% increase in maximum O2 uptake capacity. At rest, heart rate was lower after training, but resting blood pressure and plasma catecholamines were unchanged. At the same absolute work rate, plasma norepinephrine and epinephrine levels, rate pressure product, and ischemic S-T segment depression were all significantly lower after training. A higher plasma norepinephrine level was attained at maximal exercise after training (2,049 +/- 654 before vs. 3,408 +/- 1,454 pg/ml after, P less than 0.025); this was associated with a higher systolic blood pressure (175 +/- 25 before vs. 188 +/- 22 mmHg after, P less than 0.025) and a higher rate-pressure product (25.3 X 10(3) +/- 4.5 X 10(3) before vs. 27.6 X 10(3) +/- 5.2 X 10(3) after, P less than 0.025). Despite the higher plasma norepinephrine level and rate pressure product, S-T segment depression at maximal exercise was unchanged. These findings suggest that some patients with coronary arterial disease can attain a higher myocardial O2 requirement, without electrocardiographic evidence of increased ischemia, after prolonged strenuous exercise training.  相似文献   

16.
To examine how long-lasting microgravity simulated by 6 degrees head-down bed rest (HDBR) induces changes in the baroreflex control of muscle sympathetic nerve activity (MSNA) at rest and changes in responses of MSNA to orthostasis, six healthy male volunteers (range 26-42 yr) participated in Valsalva maneuver and head-up tilt (HUT) tests before and after 120 days of HDBR. MSNA was measured directly using a microneurographic technique. After long-term HDBR, resting supine MSNA and heart rate were augmented. The baroreflex slopes for MSNA during Valsalva maneuver (in supine position) and during 60 degrees HUT test, determined by least-squares linear regression analysis, were significantly steeper after than before HDBR, whereas the baroreflex slopes for R-R interval were significantly flatter after HDBR. The increase in MSNA from supine to 60 degrees HUT was not different between before and after HDBR, but mean blood pressure decreased in 60 degrees HUT after HDBR. In conclusion, the baroreflex control of MSNA was augmented, whereas the same reflex control of R-R interval was attenuated after 120 days of HDBR.  相似文献   

17.
The present study tested the hypothesis that activation of the parasympathetic nervous system could attenuate sympathetic activation to the pancreas. To test this hypothesis, we measured pancreatic norepinephrine (NE) spillover (PNESO) in anesthetized dogs during bilateral thoracic sympathetic nerve stimulation (SNS; 8 Hz, 1 ms, 10 mA, 10 min) with and without (randomized design) simultaneous bilateral cervical vagal nerve stimulation (VNS; 8 Hz, 1 ms, 10 mA, 10 min). During SNS alone, PNESO increased from the baseline of 431 +/- 88 pg/min to an average of 5,137 +/- 1,075 pg/min (P < 0.05) over the stimulation period. Simultaneous SNS and VNS resulted in a significantly (P < 0.01) decreased PNESO response [from 411 +/- 61 to an average of 2,760 +/- 1,005 pg/min (P < 0.05) over the stimulation period], compared with SNS alone. Arterial NE levels increased during SNS alone from 130 +/- 11 to approximately 600 pg/ml (P < 0.05); simultaneous SNS and VNS produced a significantly (P < 0.05) smaller response (142 +/- 17 to 330 pg/ml). Muscarinic blockade could not prevent the effect of VNS from reducing the increase in PNESO or arterial NE in response to SNS. It is concluded that parasympathetic neural activity opposes sympathetic neural activity not only at the level of the islet but also at the level of the nerves. This neural inhibition is not mediated via muscarinic mechanisms.  相似文献   

18.
Bed rest (BR) deconditioning causes excessive increase of exercise core body tempera-ture, while aerobic training improves exercise thermoregulation. The study was designed to determine whether 3 days of 6 degrees head-down bed rest (HDBR) affects body temperature and sweating dynamics during exercise and, if so, whether endurance training before HDBR modifies these responses. Twelve healthy men (20.7+/-0.9 yrs, VO2max: 46+/-4 ml x kg(-1) x min(-1) ) underwent HDBR twice: before and after 6 weeks of endurance training. Before and after HDBR, the subjects performed 45 min sitting cycle exercise at the same workload equal to 60% of VO2max determined before training. During exercise the VO2, HR, tympanic (Ttymp) and skin (Tsk) temperatures were recorded; sweating dynamics was assayed from a ventilated capsule on chest. Training increased VO2max by 12.1% (p<0.001). Resting Ttymp increased only after first HDBR (by 0.22 +/- 0.08 degrees C, p<0.05), while exercise equilibrium levels of Ttymp were increased (p<0.05) by 0.21 +/- 0.07 and 0.26 +/- 0.08 degrees C after first and second HDBR, respectively. Exercise mean Tsk tended to be lower after both HDBR periods. Total sweat loss and time-course of sweating responses were similar in all exercise tests. The sweating threshold related to Ttymp was elevated (p<0.05) only after first HDBR. In conclusion: six-week training regimen prevents HDBR-induced elevation of core temperature (Ttymp) at rest but not during ex-ercise. The post-HDBR increases of Ttymp without changes in sweating rate and the tendency for lower Tsk suggest an early (<3d) influence of BR on skin blood flow.  相似文献   

19.
Prolonged exposure to microgravity, as well as its ground-based analog, head-down bed rest (HDBR), reduces orthostatic tolerance in humans. While skin surface cooling improves orthostatic tolerance, it remains unknown whether this could be an effective countermeasure to preserve orthostatic tolerance following HDBR. We therefore tested the hypothesis that skin surface cooling improves orthostatic tolerance after prolonged HDBR. Eight subjects (six men and two women) participated in the investigation. Orthostatic tolerance was determined using a progressive lower-body negative pressure (LBNP) tolerance test before HDBR during normothermic conditions and on day 16 or day 18 of 6° HDBR during normothermic and skin surface cooling conditions (randomized order post-HDBR). The thermal conditions were achieved by perfusing water (normothermia ~34°C and skin surface cooling ~12-15°C) through a tube-lined suit worn by each subject. Tolerance tests were performed after ~30 min of the respective thermal stimulus. A cumulative stress index (CSI; mmHg LBNP·min) was determined for each LBNP protocol by summing the product of the applied negative pressure and the duration of LBNP at each stage. HDBR reduced normothermic orthostatic tolerance as indexed by a reduction in the CSI from 1,037 ± 96 mmHg·min to 574 ± 63 mmHg·min (P < 0.05). After HDBR, skin surface cooling increased orthostatic tolerance (797 ± 77 mmHg·min) compared with normothermia (P < 0.05). While the reduction in orthostatic tolerance following prolonged HDBR was not completely reversed by acute skin surface cooling, the identified improvements may serve as an important and effective countermeasure for individuals exposed to microgravity, as well as immobilized and bed-stricken individuals.  相似文献   

20.
Exposure to lower body negative pressure (LBNP) leads to an increased activation of the sympathetic nervous system (SNS) and an increase in muscle sympathetic nerve activity (MSNA). In this study, we examined the relationship between MSNA and interstitial norepinephrine (NE(i)) concentrations during LBNP. Twelve healthy volunteers were studied (26 +/- 6 yr). Simultaneous MSNA and microdialysis data were collected in six of these subjects. Measurements of MSNA (microneurography) and NE(i) (microdialysis, vastus lateralis) were performed at rest and then during an incremental LBNP paradigm (-10, -30, and -50 mmHg). MSNA rose as a function of LBNP (P < 0.001, n = 12). The plasma norepinephrine (NE(p)) concentration was 0.9 +/- 0.1 nmol/l at rest (n = 12). NE(i) measured in six subjects rose from 5.2 +/- 0.8 nmol/l at rest to 17.0 +/- 1.7 nmol/l at -50 mmHg (P < 0.001). Of note, the rise in NE(p) with LBNP was considerably less compared with the changes in NE(i) (Delta21 +/- 6% vs. Delta197 +/- 52%, n = 6, P < 0.015). MSNA and NE(i) showed a significant linear relationship (r = 0.721, P < 0.004). Activation of the SNS increased MSNA and NE(i) levels. The magnitude of the NE(i) increase was far greater than that seen for NE(p) suggesting that NE movement into the circulation decreases with baroreceptor unloading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号