首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on hepatic lipids and key enzymes involved in esterification, hydrolysis and oxidation of long-chain fatty acids at increasing doses were investigated in rats. TPA administration tended to decrease the mitochondrial activities of palmitoyl-CoA synthetase and carnitine palmitoyltransferase. The microsomal palmitoyl-CoA synthetase activity was increased. TPA administration was also associated with a dose-dependent increase of glycerophosphate acyltransferase activity both in the mitochondrial and microsomal fractions in particular. The data are consistent with a decreased catabolism of long-chain fatty acids at the mitochondrial level, and an increased capacity for esterification of fatty acids in the microsomal fraction. Peroxisomal beta-oxidation was increased about 2-fold in the peroxisome-enriched fraction of TPA-treated rats while the catalase and urate oxidase activities were only marginally affected. TPA administration revealed elevated capacity for hydrolysis of palmitoyl-CoA and palmitoyl-L-carnitine in the microsomal fraction. Neither increased cytosolic palmitoyl-CoA hydrolase activity nor increased hydroxylation of lauric acid nor changes of the hepatic content of cytochrome P-450 isoenzymic forms were observed in the TPA-treated animals. There was no induction of the protein content of the bifunctional enoyl-CoA hydratase. Thus, TPA behaves more like choline-deficient diet and ethionine treatment than well-known peroxisome proliferators. It seems possible that TPA selectively stimulated the peroxisomal activities, i.e., peroxisomal beta-oxidation rather than evoking a peroxisome proliferation capacity.  相似文献   

2.
1. The acyl-CoA:cholesterol acyltransferase (ACAT) activity and lipid composition of intestinal microsomal membrane were investigated 6 weeks after both 50 and 75% distal small bowel resection (DSBR). 2. No changes in both microsomal ACAT activity and cholesteryl ester levels were found, while microsomal non-esterified cholesterol content was increased after the surgical operation. 3. The total phospholipid content of the microsomes did not change as a result of DSBR. 4. The microsomal phospholipid fatty acid composition showed a significant increase in saturated fatty acids together with no changes in both total monounsaturated and total polyunsaturated fatty acids after resection. 5. An increase in the levels of linoleic acid accompanied by a decrease in arachidonic acid was found in remnant intestine of resected rats.  相似文献   

3.
The saturation of the fat contained in the diet has been observed to affect the acylcoenzyme A:cholesterol acyltransferase (ACAT) activity of rat liver microsomes. ACAT activity in microsomes (Mp) prepared from livers of rats fed a polyunsaturated fat-enriched diet containing 14% sunflower seed oil was 70-90% higher than in microsomes (Ms) prepared from livers of rats fed a saturated fat-enriched diet containing 14% coconut oil. This difference was observed within 20 days after the diets were begun, the earliest time tested, and persisted throughout the 70-day experimental period. The difference was noted at all [1-14C]palmitoyl CoA concentrations tested, 2.5-33 micronM, and at temperatures between 18 and 40 degrees C. Arrhenius plots revealed a single transition in enzyme activity, occurring at 29 degrees C in both microsomal preparations. Likewise, the activation energy above this transition was the same in Mp and Ms, 12.5 KCal/mol. Addition of albumin to the incubation medium increased the ACAT activity of both microsome preparations, but the difference between Mp and Ms persisted. Mp was enriched in polyenoic fatty acids, primarily 18:2 and 20:4, while Ms was enriched in monoenoic acids. Although the 20:4 increase in Mp occurred in all phosphoglycerides, it was especially pronounced in the serine and inositol phosphoglyceride fraction. There were no differences in the phospholipid or cholesterol content, phospholipid head group composition, or protein composition of the two microsomal preparations. The possibility is discussed that the changes in ACAT activity result from the differences in fatty acid composition of the microsomes. Other microsomal enzymes exhibited varying responses to these dietary fatty acid modifications. Palmitoyl CoA hydrolase and NADPH cytochrome c reductase activities were unchanged. UDP glucuronyl transferase activity was 50% higher in Mp, but glucose-6-phosphatase and NADH cytochrome b5 reductase activities were 25% higher in Ms. Therefore, dietary fat modifications do not produce a uniform effect on the activity of microsomal enzymes.  相似文献   

4.
The effect of dietary soybean phospholipid on the activities of hepatic triacylglycerol-synthesizing enzymes was compared with soybean oil in fasted-refed rats. Soybean oil at the dietary level corresponding to 20% but not at 5% fatty acid level (21.2 and 5.3% on weight bases, respectively) significantly decreased liver microsomal diacylglycerol acyltransferase activities measured with the endogenous diacylglycerol substrate. Dietary soybean phospholipid even at the dietary level corresponding to 2% fatty acids (3.4% on weight base) significantly decreased the acyltransferase activities measured with endogenous substrate. The dietary phospholipid further decreased the parameter as the dietary level increased, and at the 5% fatty acid level, it was lower than that obtained with soybean oil at 20% fatty acid level. Soybean oil and phospholipid decreased the diacylglycerol acyltransferase activities measured with the saturating concentration of exogenous dioleoylglycerol substrate only when the activities were expressed in terms of total activity (mumol/min per liver) but to much lesser extents. Dietary phospholipid compared to the oil profoundly decreased not only hepatic triacylglycerol but also microsomal diacylglycerol levels. It was indicated that the availability of microsomal diacylglycerol as the substrate for diacylglycerol transferase is the critical determinant in regulating hepatic triacylglycerol synthesis and concentration in this experimental situation. Alterations in the activities of microsomal glycerol 3-phosphate acyltransferase and of the enzymes in fatty acid synthesis could account for the phospholipid-dependent decrease in the microsomal concentration of this intermediate in triacylglycerol synthesis.  相似文献   

5.
This study was conducted to study the influence of dietary L-N(omega)nitroarginine (L-NNA), a nitric oxide (NO) synthase inhibitor, on serum lipids and lipoproteins and on the activities of enzymes related to lipid metabolism in rats. Feeding rats a diet containing 0.2 g/kg L-NNA for 5 weeks elevated serum concentrations of triglyceride, cholesterol, phospholipid, and free fatty acid and reduced serum nitrate (an oxidation product of NO). The elevation in serum triglyceride was mainly due to the elevation in very low density lipoprotein (VLDL) triglyceride. Contents of cholesterol and phospholipid in the VLDL fraction also were elevated by L-NNA. L-NNA treatment caused significantly higher activity of hepatic microsomal phosphatidate phosphohydrolase (the rate-limiting enzyme in triglyceride synthesis) and lower activity of hepatic carnitine palmitoyltransferase (the rate-limiting enzyme in fatty acid oxidation). Activities of hepatic enzymes responsible for fatty acid synthesis such as glucose-6-phosphate dehydrogenase, malic enzyme, and fatty acid synthase were unaffected by L-NNA. The activity of hepatic microsomal phosphocholine cytidyltransferase (the rate-limiting enzyme in phosphatidylcholine synthesis) was reduced significantly by L-NNA. Our results suggest that lower NO production caused the elevations in hepatic triglyceride synthesis by higher esterification of fatty acid and lower fatty acid oxidation, leading to an enrichment of VLDL triglyceride.  相似文献   

6.
The activity and mRNA level of hepatic enzymes in fatty acid oxidation and synthesis were compared in rats fed diets containing either 15% saturated fat (palm oil), safflower oil rich in linoleic acid, perilla oil rich in α-linolenic acid or fish oil rich in eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) for 15 days. The mitochondrial fatty acid oxidation rate was 50% higher in rats fed perilla and fish oils than in the other groups. Perilla and fish oils compared to palm and safflower oils approximately doubled and more than tripled, respectively, peroxisomal fatty acid oxidation rate. Compared to palm and safflower oil, both perilla and fish oils caused a 50% increase in carnitine palmitoyltransferase I activity. Dietary fats rich in n-3 fatty acids also increased the activity of other fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. The extent of the increase was greater with fish oil than with perilla oil. Interestingly, both perilla and fish oils decreased the activity of 3-hydroxyacyl-CoA dehydrogenase measured using short- and medium-chain substrates. Compared to palm and safflower oils, perilla and fish oils increased the mRNA level of many mitochondrial and peroxisomal enzymes. Increases were generally greater with fish oil than with perilla oil. Fatty acid synthase, glucose-6-phosphate dehydrogenase, and pyruvate kinase activity and mRNA level were higher in rats fed palm oil than in the other groups. Among rats fed polyunsaturated fats, activities and mRNA levels of these enzymes were lower in rats fed fish oil than in the animals fed perilla and safflower oils. The values were comparable between the latter two groups. Safflower and fish oils but not perilla oil, compared to palm oil, also decreased malic enzyme activity and mRNA level. Examination of the fatty acid composition of hepatic phospholipid indicated that dietary α-linolenic acid is effectively desaturated and elongated to form EPA and DHA. Dietary perilla oil and fish oil therefore exert similar physiological activity in modulating hepatic fatty acid oxidation, but these dietary fats considerably differ in affecting fatty acid synthesis.  相似文献   

7.
1. The effects of unsaturated fatty acids on drug-metabolizing enzymes in vitro were measured by using rat and rabbit hepatic 9000g supernatant fractions. 2. Unsaturated fatty acids inhibited the hepatic microsomal metabolism of ;type I' drugs with inhibition increasing with unsaturation: arachidonic acid>linolenic acid>linoleic acid>oleic acid. Inhibition was independent of lipid peroxidation. Linoleic acid competitively inhibited the microsomal O-demethylation of p-nitroanisole and the N-demethylation of (+)-benzphetamine. 3. The hepatic microsomal metabolism of ;type II' substrates, aniline and (-)-amphetamine, was not affected by unsaturated fatty acids. 4. The rate of reduction of p-nitrobenzoic acid and Neoprontosil was accelerated by unsaturated fatty acids. 5. Linoleic acid up to 3.5mm did not decelerate the generation of NADPH by rat liver soluble fraction, nor the activity of NADPH-cytochrome c reductase of rat liver microsomes. Hepatic microsomal NADPH oxidase activity was slightly enhanced by added linoleic acid. 6. No measurable disappearance of exogenously added linoleic acid occurred when this fatty acid was incubated with rat liver microsomes and an NADPH source. 7. The unsaturated fatty acids used in this study produced type I spectra when added to rat liver microsomes, and affected several microsomal enzyme activities in a manner characteristic of type I ligands.  相似文献   

8.
The changes in linoleyl-CoA desaturase activity of rat liver microsomes were studied after a single intraperitoneal injection of 11-deoxycorticosterone or aldosterone at physiological doses. Fatty acid of plasma and different liver fractions, and physical properties of microsomal membranes were also investigated. It was found that the specific activity of delta 6 desaturase decreased 4-fold 24 hr after the injection of aldosterone or deoxycorticosterone. Pretreatment of the rats with aldosterone led to a significant decrease in the percent distribution of palmitic, arachidonic, docosapentaenoic and docosahexenoic acids, with a concomitant increase in palmitoleic, oleic and linoleic acids in plasma and liver homogenates, microsomes and cytosol fractions. A similar pattern was observed after deoxycorticosterone administration. The changes resulted in a decreased unsaturation index of all fractions studied and were well-correlated with the increase observed in fluorescence depolarization of the hydrophobic probe 1,6-diphenylhexatriene in liver microsomal membranes. The interlipid and lipid/protein ratios in microsomes remained constant after hormonal treatment. These results are consistent with the idea that the inhibition of delta 6 desaturase activity and the alterations in fatty acid composition induced by mineralocorticoids, are solely responsible for the measured decrease in liver microsomal membrane fluidity.  相似文献   

9.
1. Polychlorinated biphenyls (PCB) are abundant and persistent pollutants in the ecosystem. Commercial mixtures (e.g. Aroclor 1254) can contain up to 80 different isomers and congeners, many of which accumulate in biological systems by the ingestion of PCB-contaminated lipid components of food chains. 2. Commercial mixtures of PCB induce, in hepatic microsomal membranes in vivo, a variety of different forms of the cytochrome P-450 components of enzyme systems involved in the metabolism of drugs and other xenobiotics, and can also induce the proliferation of this membrane. Since these microsomal enzyme systems share a number of the requirements of microsomal fatty acid desaturases, we have investigated whether the induction by PCB in vivo of cytochrome-P-450-linked enzymes in the proliferating hepatic microsomal membrane of the pigeon and the rat is accompanied by increased proportions of polyunsaturated fatty acids in this membrane. 3. The most striking changes observed 120 h after treating pigeons and rats with 1.5 mmol Aroclor 1254/kg body mass were 2.2-fold and 1.6-fold increases, respectively, in the proportion of arachidonic acid in the hepatic microsomal membrane. When the effects of this treatment on the proliferation of this membrane and increase in liver mass are taken into account, the amount of arachidonic acid in the total microsomal membrane of pigeon and rat livers increased 6.7-fold and 1.9-fold, respectively. 4. These changes were accompanied by very significant increases in pigeons and rats of the concentration of hepatic microsomal cytochrome P-450, and in the activity in microsomal protein of a wide range of cytochrome P-450-dependent enzyme involved in the metabolism of drugs and other xenobiotics. 5. This effect of PCB, of increasing in vivo the degree of unsaturation of fatty acids of hepatic microsomal membrane, appears to be a novel finding, and does not seem to have been investigated for other drugs and xenobiotics. Preliminary results have shown that the effect is accompanied by substantial increases in the total activity of delta 6 and delta 5 microsomal fatty acid desaturases converting 18:2 (9, 12) (linoleic acid) to 20:4 (5, 8, 11, 14) (arachidonic acid) [Borlakoglu, J.T., Dils, R.R., Edwards-Webb, J.D. & Walker, C.H. (1988) Biochem. Soc. Trans. 16, 1072]. 6. It is postulated that there is a significant link between increased fatty acid desaturation and the induction of cytochrome-P-450-linked enzymes, and this is discussed in terms of the mechanisms involved in the metabolism of foreign compounds.  相似文献   

10.
Male rats were fed diets containing olive (OO) or evening primrose (EPO) oil (10% w/w), with or without added cholesterol (1% w/w). After 6-week feeding, the lipid and fatty acid compositions, fluidity, and fatty acid desaturating and cholesterol biosynthesis/esterification related enzymes of liver microsomes were determined. Both the OO and EPO diets, without added cholesterol, increased the contents of oleic and arachidonic acids, respectively, of rat liver microsomes. The results were consistent with the increases in delta 9 and delta 6 desaturation of n-6 essential fatty acids and the lower microviscosity in the EPO group. Dietary cholesterol led to an increase in the cholesterol content of liver microsomes as well as that of phosphatidylcholine (PC). The cholesterol/phospholipid and PC/PE (phosphatidylethanolamine) ratios were also elevated. Fatty acid composition changes were expressed as the accumulation of monounsaturated fatty acids, with accompanying milder depletion of saturated fatty acids in rat liver microsomes. In addition, the arachidonic acid content was lowered, with a concomitant increase in linoleic acid, which led to a significant decrease in the 20:4/18:2 ratio in comparison to in animals fed the cholesterol-free diets. Cholesterol feeding also increased delta 9 desaturase activity as well as membrane microviscosity, whereas it decreased delta 6 and delta 5 desaturase activities. There was a very strong correlation between fluidity and the unsaturation index reduction in the membrane. Furthermore, the activity of hydroxymethylglutaryl-CoA reductase increased and the activity of acyl-CoA:cholesterol acyltransferase decreased in liver microsomes from both cholesterol-fed groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effect of dietary supplementation of old rats (26–33 months) with hydrogenated peanut oil on the activity of mitochondrial enzymes in skeletal muscles has been studied. The activities of NADH-coenzyme Q1 oxidoreductase, cytochrome c oxidase, and citrate synthase were determined spectrophotometrically in muscle homogenates. The activities of respiratory complexes I and IV were shown to significantly decrease with the age compared to the activity of the same enzymes in young animals, while the activity of citrate synthase was virtually unchanged. The fatty acid composition of muscle homogenates of old rats differed from that of young animals by a reduced content of myristic, oleic, linoleic, and α-linolenic acids and enhanced content of dihomo-γ-linolenic, arachidonic, and docosahexaenoic acids. Per oral supple-mentation of the old rats with hydrogenated peanut oil completely restored the activity of complex IV and increased the activity of complex I to 80% of the value observed in muscles of young animals, reducing the content of stearic, dihomo-γ-linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids relative to that in the groups of old and young rats. The content of oleic and linoleic acids increased relatively to that in the group of the old rats, as well as young animals. The possible mechanisms of the restoration of the activity of the respiratory enzymes under the administration of hydrogenated peanut oil are discussed.  相似文献   

12.
1. A study of the mitochondrial phospholipids, phospholipid fatty acid patterns and enzyme activities was investigated in brown tissue (B.A.T.) from rats chronically exposed to cold and/or treated with thyroxine. 2. The total activities of the oxidative enzymes were increased after cold exposure, but not after thyroxine treatment. 3. Cold exposure increased the amount of phosphatidylethanolamine, phosphatidylcholine, cardiolipin and lysophospholipids, the effect being greatest for phosphatidylethanolamine. At the same time, there were marked alterations in the fatty acid composition of the mitochondrial phospholipids (decrease of palmitic, palmitoleic and oleic acids ; increase of stearic, linoleic and arachidonic acids). 4. All these cold-induced alterations were reversed by re-adaptation of the animal to a normal temperature range. 5. The alterations of the fatty acid composition of phospholipids could be explained by changes in the rate of individual fatty acid biosynthesis.  相似文献   

13.
Diets supplemented with high levels of either saturated fatty acids or unsaturated fatty acids were fed to adult rats for a period of 9 weeks and changes in the liver mitochondrial membrane phospholipid fatty acid composition and thermal behaviour of succinate: cytochrome c reductase were determined. The dietary treatment induced a change in the omega 6 to omega 3 unsaturated fatty acid ratio in the membrane lipids, with the ratio being highest with the unsaturated fatty acid and lowest with the saturated fatty acid diet. Arrhenius plots of succinate: cytochrome c reductase activity exhibited differences in both critical temperature (Tf) and Arrhenius activation energy (Ea) depending on the type of dietary treatment. The Tf was elevated from 23 degrees C in control to 32 degrees C in the saturated fatty acid-supplemented group. No significant effect on the Tf was observed in the unsaturated fatty acid-supplemented group however higher Ea values were observed due to the unsaturated fatty acid diet. The changes in succinate: cytochrome c reductase are probably due to changes in the lipid-protein interactions in the membrane, induced by the dietary lipid supplementation.  相似文献   

14.
Hepatic metabolism of long-chain fatty acids were studied in young male rats fed a semisynthetic diet containing 20% (w/w) partially hydrogenated fish oil (PHFO)2, with or without 2% (w/w) linoleic acid. The enzymic activities involved in the formation and breakdown of long-chain acyl-CoA were both increased in the animals fed the semisynthetic diet, compared to pellet-fed control animals. Thus, the specific palmitoyl-CoA synthetase activity increased slightly in both the mitochondrial (1.4-fold) and the microsomal (1.6-fold) fractions. In the peroxisome-enriched fraction the activity was increased (about 2.6-fold) only on addition of linoleic acid to the diet. The data are consistent with an increased catabolism of long-chain fatty acids by a peroxisomal and a mitochondrial pathway. Thus, the total carnitine palmitoyltransferase activity increased 2-fold in the mitochondrial fraction, and was partly prevented by added linoleic acid. Peroxisomal beta-oxidation activity was also increased (about 7-fold) in livers of PHFO-fed rats, but did not change when linoleic acid was added. The PHFO-fed rats also revealed elevated capacity for hydrolysis of palmitoyl-CoA in both the mitochondrial (2.4-fold) and the cytosolic (2.0-fold) fractions and the latter was almost completely and selectively prevented by added linoleic acid. The s values of mitochondria and peroxisomes varied with the dietary regime, and some of the observed changes in the specific activities of the fatty acid metabolizing enzymes with multiple subcellular localization can be explained as an effect of changes in the s values of the organelles. Thus, the s value of mitochondria increased 1.8-fold as a result of PHFO feeding, but was fully prevented by linoleic acid in the diet. On the other hand, the s values of peroxisomes decreased by about 50% on feeding a PHFO diet, and by about 25% with added linoleic acid.  相似文献   

15.
We have studied the influence of experimental hypothyroidism in the rat on the synthesis of unsaturated fatty acids and on liver microsomal lipid fatty acid composition. Hypothyroid rats demonstrated an 80% decrease in delta 9 (stearate) desaturation and a 43% decrease in delta 6 (linoleate) desaturation. Liver microsomal fatty acid composition was altered in the hypothyroid animals with a significantly decreased proportion of arachidonate and increased proportions of linoleate, eicosa-8,11,14-trienoate, eicosapentaenoate and docosahexaenoate. The bulk of these changes occurred in both of the two major phospholipid components, phosphatidylcholine and phosphatidylethanolamine. All of the changes were corrected by treatment of the hypothyroid rat with 25 micrograms of tri-iodothyronine/100 g body wt. twice daily. The diminished delta 9 desaturation did not lead to any changes in fatty acid composition. The increased linoleate and decreased arachidonate levels may be due to the diminished delta 6 desaturase activity, the rate-controlling step in the conversion of linoleate into arachidonate. The increases in the proportions of the other polyunsaturated fatty acid components cannot be explained by changes in the synthesis of unsaturated fatty acids, but are probably due to diminished utilization of these fatty acids.  相似文献   

16.
Male rats were fed a diet containing 0.5% (w/w) p-chlorophenoxyisobutyric acid (clofibric acid), a hypolipidemic drug. Activities of stearoyl-CoA desaturation in hepatic microsomes were increased approx. 4 times following the administration of clofibric acid for 7 days. An increase in the activity of desaturation of stearic acid was also observed in the liver of clofibric acid-fed rats in vivo. The increase in the activity of microsomal stearoyl-CoA desaturation by clofibric acid-feeding was due to the increase in the activity of terminal desaturase as measured by the rate constant for cytochrome b5 reoxidation, but not due to the changes in cytochrome b5 content and NADH-cytochrome b5 reductase activity. Increases in the activity of stearoyl-CoA desaturation by clofibric acid-feeding were also observed in rats of hormonally altered state, such as diabetic rats, hyperthyroid rats and hypothyroid rats. Percentages of octadecenoic acid in total fatty acid of hepatic lipid were increased with the increase in the activity of stearoyl-CoA desaturation.  相似文献   

17.
The fatty acid composition of cultured Friend erythroleukemia cells was modified by supplementation of the medium with oleic or linoleic acid. There was a 30% reduction in saturated and a 35% reduction in polyunsaturated fatty acids in microsomal phospholipids when the cells were grown in media supplemented with oleic acid, and a 3-fold increase in polyunsaturated fatty acids when the cells were grown in linoleic acid-supplemented media. Electron-spin resonance studies with the 5-nitroxystearate probe demonstrated that there was no appreciable change in microsomal lipid mobility as measured by the order parameters. In contrast, changes in lipid mobility were detected with the spin-label probe when microsomes were first isolated from Friend erythroleukemia cells and subsequently modified by incubation with liposomes composed of either dioleoyl- or dilinoleoylphosphatidylcholine plus bovine liver phospholipid-exchange protein. The fatty acid compositional changes produced in these microsomes were similar to those obtained when the intact cells were grown in media containing supplemental fatty acids. These findings indicate that the lipid mobility of Friend cell microsomes can be altered by phospholipid replacements in vitro, but that this does not occur when similar microsomal fatty acid modifications are produced during culture of the intact cell.  相似文献   

18.
Characterization of highly purified ornithine decarboxylase from rat heart   总被引:3,自引:0,他引:3  
The fatty acid composition of cultured Friend erythroleukemia cells was modified by supplementation of the medium with oleic or linoleic acid. There was a 30% reduction in saturated and a 35% reduction in polyunsaturated fatty acids in microsomal phospholipids when the cells were grown in media supplemented with oleic acid, and a 3-fold increase in polyunsaturated fatty acids when the cells were grown in linoleic acid-supplemented media. Electron-spin resonance studies with the 5- nitroxystearate probe demonstrated that there was no appreciable change in microsomal lipid mobility as measured by the order parameters. In contrast, changes in lipid mobility were detected with the spin-label probe when microsomes were first isolated from Friend erythroleukemia cells and subsequently modified by incubation with liposomes composed of either dioleoyl- or dilinoleoylphosphatidylcholine plus bovine liver phospholipid-exchange protein. The fatty acid compositional changes produced in these microsomes were similar to those obtained when the intact cells were grown in media containing supplemental fatty acids. These findings indicate that the lipid mobility of Friend cell microsomes can be altered by phospholipid replacements in vitro, but that this does not occur when similar microsomal fatty acid modifications are produced during culture of the intact cell.  相似文献   

19.
Plasma and liver microsomal fatty acid patterns of female rats (Rattus norvegicus) with either low or high serum levels of prolactin (PRL) were studied. Hyperprolactinemia was achieved by grafting anterior pituitary glands or by estradiol administration. One group treated with estradiol also received bromocriptine to inhibit PRL secretion. Ovariectomized (OVX) rats showed a decrease in PRL levels as compared with intact animals (controls). Rats possessing high levels of circulating PRL showed a significant decrease of linoleic acid in the fatty acid pattern of total and polar liver microsomal lipids. High PRL levels in the presence of normal estrogen levels significantly increased arachidonic acid in the same group of lipids. The group of rats treated with estrogen evidenced a decrease in arachidonic acid and in the unsaturation index. From these results it is possible to infer a decrease in the activity of the desaturases. The changes observed in the estradiol-treated group were not modified by bromocriptine administration. OVX rats showed no changes when compared with controls. It is concluded that, while PRL decreases the microsomal unsaturation index, estrogen administration causes a decrease in poly-unsaturated fatty acid biosynthesis and that this effect is independent of PRL levels.  相似文献   

20.
The effects of aging on lipid absorption, particularly on fatty acid glycerophospholipid and triacylglycerol esterification, were investigated in 2.5-,12- and 24-month-old mice and rats. Two intestinal mucosa microsomal enzymes, involved in the dietary fatty acid absorption, were assayed:acylCoA:2-monoacylglycerol acyltransferase and acylCoA:1-lysophosphatidylcholine acyltransferase. In both mice and rats, the activities of both enzymes varied with the nature of the acyl-CoA. Indeed acylCoa:2-monoacylglycerol acyltransferase activities were significantly higher with oleoyl-CoA and linoleoyl-CoA than with palmitoyl-CoA and arachidonoyl-CoA, while acylCoA:1-lysophosphatidylcholine acyltransferase activities were highest with arachidonoyl-CoA. AcylCoA:2-monoacylglycerol acyltransferase activity did not decrease significantly with aging in mice or rats, whatever the acyl-CoA used. In contrast, acylCoA:1-lysophosphatidylcholine acyltransferase activity in the 24-month-old rats was significantly lower (−47 %) than in 2.5-month-old rats, with oleoyl-CoA, linoleoyl-CoA and arachidonoyl-CoA. Simultaneously we observed that less glycerophospholipid esterification of oleic and linoleic acid occurs in older rats than in 2.5-month-old rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号