首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interspecific transfer of two giant linear plasmids was investigated in sterile soil microcosms. Plasmids pRJ3L (322 kb) and pRJ28 (330 kb), both encoding mercury resistance, were successfully transferred in amended soil microcosms from their streptomycete hosts, the isolates CHR3 and CHR28, respectively, to a plasmidless and mercury-sensitive strain, Streptomyces lividans TK24. Transconjugants of S. lividans TK24 were first observed after 2 to 3 days of incubation at 30°C, which corresponded to the time taken for the formation of mycelia in soil. Transfer frequencies were 4.8 × 10−4 and 3.6 × 10−5 CFU/donor genome for pRJ3L and pRJ28, respectively. Transconjugants were analyzed by pulsed-field gel electrophoresis for the presence of plasmids, and plasmid identity was confirmed by restriction digests. Total genomic DNA digests confirmed that transconjugants were S. lividans TK24. The mercury resistance genes were shown to be on the plasmid in the transconjugants by hybridization analysis and were still functional. This is the first demonstration of transfer of giant linear plasmids in sterile soil microcosms. Giant linear plasmids were detected in many Streptomyces spp. isolated from mercury-contaminated sediments from Boston Harbor (United States), Townsville Harbor (Australia), and the Sali River (Tucuman, Argentina). Mercury resistance genes were shown to be present on some of these plasmids. Our findings that giant linear plasmids can be transferred between Streptomyces spp. and are common in environmental Streptomyces isolates suggest that these plasmids are important in gene transfer between streptomycetes in the environment.  相似文献   

2.
The Streptomyces strains CHR3 and CHR28, isolated from the Baltimore Inner Harbor, contained two and one, respectively, giant linear plasmids which carry terminally bound proteins. The plasmids pRJ3L (322 kb), from CHR3, and pRJ28 (330 kb), from CHR28, carry genes homologous to the previously characterized chromosomal Streptomyces lividans 66 operon encoding resistance against mercuric compounds. Both plasmids are transmissible (without any detectable rearrangement) to the chloramphenicol-resistant S. lividans TK24 strain lacking plasmids and carrying a chromosomal deletion of the mer operon. S. lividans TK24 conjugants harboring pRJ3L or pRJ28 exhibited profiles of mercury resistance to mercuric compounds similar to those of Streptomyces strains CHR3 and CHR28.  相似文献   

3.
Abstract: The aim of this work was to determine the efficiency of the conjugative plasmid pTS130 to transfer in various environmental conditions between two strains of Streptomyces lividans . This plasmid is a derivative of the conjugative and integrative plasmid pSAM2 isolated originally from Streptomyces ambofaciens and capable of transfer to a large range of bacteria. Our results demonstrate the high frequency of the conjugation mechanism since more than 60% of the recipient cells developed on agar slants harbored the plasmid pTS130 (as evidenced by Southern hybridization with a pSAM2 derivative plasmid probe). When donor and recipient strains were inoculated into sterile and non-sterile soil microcosms, transconjugants were detected after two days of incubation in both cases. However, the number of donor, recipient and transconjugant cells were established at a lower level in the non-sterile soil than in the sterile soil experiments. Moreover, nutrient amendment of the sterile soil was found to increase the population levels of parental strains and transfer frequencies both significantly and simultaneously. On the other hand, modifying water potential of the soil microcosms did not result in affecting the establishment of the Streptomyces lividans cells or the transfer rate.  相似文献   

4.
The conjugative plasmid pIJ101 and its conjugative nondeletion derivatives pIJ303 and pIJ211 were tested for their transferability between strains of Streptomyces on laboratory media and in the soil environment. Their roles in the mobilization of the cloning vector plasmid pIJ702, a nonconjugative deletion derivative of pIJ101, were also examined. Biparental and triparental crosses were performed on agar slants and in sterile soil between the plasmid donor Streptomyces lividans and several recipient Streptomyces strains previously isolated from soil. Conjugative plasmids were transferred to seven recipients in slant crosses and to three recipients in soil. Plasmids isolated from recipients showed restriction fragment patterns identical to that of the original plasmid in S. lividans. Plasmid pIJ303 was transferred less frequently in soil than on slants, and the frequency of transfer was higher at 30 degrees C than at the other temperatures examined. Transconjugant Streptomyces strains differed in their ability to maintain pIJ303. The nonconjugative plasmid pIJ702 was mobilized on agar slants into S. coelicolor 2708, which already contains a self-transmissible plasmid. Plasmid pIJ702 was also mobilized into S. flavovirens, Streptomyces sp. strain 87A, and S. parvulus on slants and in sterile soil after triparental crosses with two donors, one containing pIJ702 and the other containing either pIJ101 or pIJ211. The presence of a conjugative plasmid donor was required for the transfer of pIJ702 to S. parvulus 1234, S. flavovirens 28, and Streptomyces sp. strain 87A. Plasmid pIJ702 was always transferred in its normal, autonomous form. Chromosomal recombination also occurred in transconjugants after the transfer of pIJ702. This is the first report of gene transfer between Streptomyces strains in soil.  相似文献   

5.
The conjugative plasmid pIJ101 and its conjugative nondeletion derivatives pIJ303 and pIJ211 were tested for their transferability between strains of Streptomyces on laboratory media and in the soil environment. Their roles in the mobilization of the cloning vector plasmid pIJ702, a nonconjugative deletion derivative of pIJ101, were also examined. Biparental and triparental crosses were performed on agar slants and in sterile soil between the plasmid donor Streptomyces lividans and several recipient Streptomyces strains previously isolated from soil. Conjugative plasmids were transferred to seven recipients in slant crosses and to three recipients in soil. Plasmids isolated from recipients showed restriction fragment patterns identical to that of the original plasmid in S. lividans. Plasmid pIJ303 was transferred less frequently in soil than on slants, and the frequency of transfer was higher at 30 degrees C than at the other temperatures examined. Transconjugant Streptomyces strains differed in their ability to maintain pIJ303. The nonconjugative plasmid pIJ702 was mobilized on agar slants into S. coelicolor 2708, which already contains a self-transmissible plasmid. Plasmid pIJ702 was also mobilized into S. flavovirens, Streptomyces sp. strain 87A, and S. parvulus on slants and in sterile soil after triparental crosses with two donors, one containing pIJ702 and the other containing either pIJ101 or pIJ211. The presence of a conjugative plasmid donor was required for the transfer of pIJ702 to S. parvulus 1234, S. flavovirens 28, and Streptomyces sp. strain 87A. Plasmid pIJ702 was always transferred in its normal, autonomous form. Chromosomal recombination also occurred in transconjugants after the transfer of pIJ702. This is the first report of gene transfer between Streptomyces strains in soil.  相似文献   

6.
Abstract: Escherichia coli recipient and E. coli donor strains carrying streptothricin-resistance genes were inoculated together into different soil microcosms. These genes were localized on the narrow host range plasmids of incompatibility (Inc) groups FII, Il, and on the broad host range plasmids of IncP1, IncN, IncW3, and IncQ. The experiments were intended to study the transfer of these plasmids in sterile and non-sterile soil with and without antibiotic selective pressure and in planted soil microcosms. Transfer of all broad host range plasmids from the introduced E. coli donor into the recipient was observed in all microcosm experiments. These results indicate that broad host range plasmids encoding short and rigid pili might spread in soil environments by conjugative transfer. In contrast, transfer of the narrow host range plasmids of IncFII and IncI1, into E. coli recipients was not found in sterile or non-sterile soil. These plasmids encoded flexible pili or flexible and rigid pili, respectively. In all experiments highest numbers of transconjugants were detected for the IncP1-plasmid (pTH16). There was evidence with plasmids belonging to IncP group transferred by conjugation into a variety of indigenous soil bacteria at detectable frequencies. Significantly higher numbers of indigenous transconjugants were obtained for the IncP-plasmid under antibiotic selection pressure, and a greater diversity of transconjugants was detected. Availability of nutrients and rhizosphere exudates stimulated transfer in soil. Furthermore, transfer of the IncN-plasmid (pIE1037) into indigenous bacteria of the rhizosphere community could be detected. The transconjugants were determined by BIOLOG as Serratia liquefaciens . Despite the known broad host range of IncW3 and IncQ-plasmids, transfer into indigenous soil bacteria could not be detected.  相似文献   

7.
DNA from Streptomyces griseus ATCC 12475 was partially digested with Sau3A and fragments were ligated into BglII-cleaved pIJ702. When the ligation mixture was used to transform protoplasts of Streptomyces lividans TK54, two transformants resistant to both thiostrepton and streptomycin were isolated. The hybrid plasmids pBV3 and pBV4 which they contained, carrying inserts of sizes 4.45 and 11.55 kbp respectively, each retransformed S. lividans to streptomycin resistance at high efficiency. Both plasmids hybridized to restriction digests of S. griseus chromosomal DNA in Southern blot experiments. In vitro deletion and sub-cloning experiments showed the sequence conferring streptomycin resistance to lie within a segment of 1.95 kbp. Extracts of TK54(pBV3) and TK54(pBV4) contained a streptomycin phosphotransferase similar to that in extracts of S. griseus. Streptomycin phosphotransferase activity appeared in extracts of S. griseus, TK54(pBV3) and TK54(pBV4) within 2 d of inoculation. When pBV3 and pBV4 were retransformed into S. griseus with selection for thiostrepton resistance, plasmid DNA of sizes corresponding to the incoming plasmids was found in the transformants. In these transformants the phosphotransferase appeared at 1.5 rather than 2 d, and reached a level over twice that of the original S. griseus strain.  相似文献   

8.
Abstract Lysogenic infections were demonstrated in microcosms of sterile soil inoculated with Streptomyces lividans and the φC31 derivative, KC301, in free state or via lysogenized hosts. Intermittent soil mixing caused liberation of KC301 due to lysis of germinating lysogenized and uninfected spores. The presence of lysogenized host ensured that KC301 was maintained at a constant density. The lysogen S. lividans TK24 (KC301) achieved a population density lower than that of its non-lysogenized counterpart. Thiostrepton in the soil did not select for the thiostrepton resistance gene KC301. The long-term survival in soil of a temperate actinophage was demonstrated.  相似文献   

9.
10.
The growth and activity of introduced (S. lividans TK24 pIJ673 and S.lividans TK23) and indigenous (S.griseus CAG17) streptomycete strains in soil was studied, under controlled conditions. The effect of environmental parameters such as temperature, soil water content and nutrient availability on the growth and activity of these strains, was studied using a highly dynamic fed-batch soil microcosm system. Using this new system, repeated cycles of active streptomycete growth were achieved, allowing long-term investigation of metabolic activity, plasmid stability and conjugative plasmid transfer. In long-term experiments, respiration rates and enzyme activity patterns matched the pattern of germination/sporulation cycles of the inoculants. In situ hybridisation, using fluorescently labelled oligonucleotides, also proved the presence of metabolically active streptomycete mycelia in sterile soil. Plasmid stability under varying temperatures and selective pressure was studied using the above system. In both sterile and non sterile amended antibiotic containing soil, no intraspecific transfer of plasmid pIJ673 from S.lividans TK24 to S.griseus CAG17 was detected. The soil microcosm system used, though, permitted detection of intraspecific conjugative transfer of this plasmid from S.lividans TK24 to S.lividans TK23 in soil.  相似文献   

11.
Mobilizable shuttle plasmids containing the origin of transfer (oriT) region of plasmid F (IncFI), ColIb-P9 (IncI1), and RP4/RP1 (IncPalpha) were constructed to test the ability of the cognate conjugation system to mediate gene transfer from Escherichia coli to Streptomyces. The conjugative system of the IncPalpha plasmids was shown to be most effective in conjugative transfer, giving peak values of (2.7 +/- 0.2) x 10(-2) S. lividans TK24 exconjugants per recipient cell. To assess whether the mating-pair formation system or the DNA-processing apparatus of the IncPalpha plasmids is crucial in conjugative transfer, an assay with an IncQ-based mobilizable plasmid (RSF1010) specifying its own DNA-processing system was developed. Only the IncPalpha plasmid mobilized the construct to S. lividans indicating that the mating-pair formation system is primarly responsible for the promiscuous transfer of the plasmids between E. coli and Streptomyces. Dynamic of conjugative transfer from E. coli to S. lividans was investigated and exconjugants starting from the first hour of mating were obtained.  相似文献   

12.
Abstract The fate of Streptomyces lividans lysogens was studied in sterile and nonsterile soil microcosms. It was found that in sterile soil lysogens grew as well as the parental strain. However, in nonsterile soil, numbers of the lysogen decreased rapidly, indicating a decreased fitness when compared to the original organism. In addition, the release of this phage from a lysogen and its subsequent infection and lysogenisation of a recipient strain was demonstrated in sterile soil.  相似文献   

13.
Exogenous plasmid isolation method was used to assess conjugative plasmids conferring pesticide tolerance/multiple metal and antibiotic resistance from contaminated soil using bacteria detached from soil samples as a donor and rifampicin resistant E. coli HMS as a recipient strain on mineral salt agar medium supplemented with γ-HCH, and antibiotics ampicillin, tetracycline, chloramphenicol and kanamycin. Transconjugants were obtained on ampicillin (10?μg/ml) and tetracycline (20?μg/ml) amended MSA plates and frequency of ampicillin and tetracycline resistance gene transfer was 7.2?×?10(-6) and 9.2?×?10(-4) transconjugants/recipient, respectively. PCR typing methods were used to assess the presence of plasmids of the incompatibility groups IncP, IncN, IncW, IncQ and rolling circle plasmids of pMV158 type in DNA derived from transconjugants. All transconjugants were PCR amplified for the detection of Inc group plasmids and rolling circle plasmids of pMV158 family in which TM2, 3, 4, 11 and 12 (tet) transconjugants gave PCR products with the IncP-specific primers for both replication and transfer functions (trfA2 (IncP) and oriT (IncP)), while TM 14 (amp) gave an IncP specific PCR product for the replication gene trfA2 (IncP) only. TM15, 16, 18 and 21 (amp) gave a PCR product for the IncW-specific oriT (IncW). Out of 24 transconjugants, only TM 5 (tet) gave a PCR product with the pMV158 specific primer pair for oriT (RC). Our findings indicate that Inc group plasmids and rolling circle plasmids of pMV158 type may be responsible for transferring multiple antibiotic resistance genes among the bacterial soil community.  相似文献   

14.
Abstract Wild-type cells of Streptomyces hydrogenans ATCC 19631, strain HY A1, show a remarkable degree of genetic instability with regard to the biosynthesis of 17β-hydroxysteroid dehydrogenase. As plasmids might be responsible for this phenomenon we tried to detect plasmids in lysates of this microorganism. Streptomyces lividans , strain TK64 (pIJ916), was used as reference strain, containing a 19-kb plasmid with low abundancy. Whereas plasmid DNA could be shown in lysates of S. lividans TK64, no plasmid DNA was detectable in lysates of S. hydrogenans .  相似文献   

15.
A mathematical model was developed and used to simulate the long-term dynamics of growth and plasmid transfer in nutrient-limited soil microcosms of Streptomyces lividans TK24 carrying chromosomal resistance to streptomycin, S. lividans 1326; and S. violaceolatus ISP5438. Donor, recipient, and transconjugant survival was modelled by an extension to the Verhulst logistic equation which takes account of nutrient limitation, and plasmid transfer was modelled by a mass action model. Rate parameters were derived from experimental data on the early stages of the development of sterile systems. The model predicted donor, recipient, and transconjugant populations in 2.4-h (0.1-day) steps and was tested against the long-term behavior of the experimental sterile systems and independent experimental data on nonsterile systems. Bacteria were periodically enumerated onto selective media over a 20-day period. The effects of long-term nutrient-moisture depletion were correctly predicted.  相似文献   

16.
Prior to gene transfer experiments performed with nonsterile soil, plasmid pJP4 was introduced into a donor microorganism, Escherichia coli ATCC 15224, by plate mating with Ralstonia eutropha JMP134. Genes on this plasmid encode mercury resistance and partial 2, 4-dichlorophenoxyacetic acid (2,4-D) degradation. The E. coli donor lacks the chromosomal genes necessary for mineralization of 2,4-D, and this fact allows presumptive transconjugants obtained in gene transfer studies to be selected by plating on media containing 2,4-D as the carbon source. Use of this donor counterselection approach enabled detection of plasmid pJP4 transfer to indigenous populations in soils and under conditions where it had previously not been detected. In Madera Canyon soil, the sizes of the populations of presumptive indigenous transconjugants were 10(7) and 10(8) transconjugants g of dry soil(-1) for samples supplemented with 500 and 1,000 microg of 2,4-D g of dry soil(-1), respectively. Enterobacterial repetitive intergenic consensus PCR analysis of transconjugants resulted in diverse molecular fingerprints. Biolog analysis showed that all of the transconjugants were members of the genus Burkholderia or the genus Pseudomonas. No mercury-resistant, 2, 4-D-degrading microorganisms containing large plasmids or the tfdB gene were found in 2,4-D-amended uninoculated control microcosms. Thus, all of the 2,4-D-degrading isolates that contained a plasmid whose size was similar to the size of pJP4, contained the tfdB gene, and exhibited mercury resistance were considered transconjugants. In addition, slightly enhanced rates of 2,4-D degradation were observed at distinct times in soil that supported transconjugant populations compared to controls in which no gene transfer was detected.  相似文献   

17.
AIMS: To investigate the role of horizontal gene transfer of mcd (methylcarbamate-degrading) gene in high genetic diversity of carbofuran-degrading bacteria. METHODS AND RESULTS: The actuality of genetic transfer from degraders to an Agrobacterium tumefaciens strain was determined in liquid medium. The mcd gene was chosen for transfer experiments. Transconjugants were obtained irrespective of the type of the donor strain (Gram-positive or Gram-negative), size of the inoculum, or nature and concentration of the pesticide in the medium. Soil microcosms, inoculated with or without the donor and/or recipient strains were used. The size of the initial degrading population (treated or untreated soil) and the nature of the inoculated donor strains were considered. More transconjugants were isolated in the previously treated soil than in the untreated soil. Agrobacterium transconjugants were isolated even when the donor strain was not inoculated, probably as a result of gene transfer from indigenous degrading population to the recipient strain. Moreover, potential transconjugants belonging to the Pseudomonas genus were isolated. CONCLUSIONS: Our results seem to demonstrate that the mcd gene is transferable in soil among bacterial populations. SIGNIFICANCE AND IMPACTS OF THE STUDY: The transfer of the mcd gene is partly responsible for the high genetic diversity of micro-organisms able to catabolize carbofuran.  相似文献   

18.
The growth and survival of strains of Streptomyces lividans and S. violaceolatus in sterile and nonsterile soil was investigated by using inoculated soil microcosms run as batch systems. It was evident that, after an initial short mycelial growth phase of 2 to 3 days, sporulation occurred and inoculants survived as spores. The transfer of a high-copy-number, self-transmissible plasmid, pIJ673, was detected by using intra- and interspecific crosses. The initial detection of transconjugants correlated with the development of the mycelial state of the inoculants (as confirmed by scanning electron microscopy) after 2 days of incubation. Subsequent spread of the plasmid was attributed to spread within existing mycelium followed by sporulation. In natural soil, inoculant numbers remained constant or declined, but plasmid transfer was readily detected.  相似文献   

19.
A partial genomic library was prepared in E. coli JM109 using pBR322 as vector and 2.4 kb Sau 3A I chromosomal fragment, encoding a nitroaryl reductase (nbr A) gene, from Streptomyces aminophilus strain MCMB 411. From the library, 2.4 kb fragment was recloned in E. coli JM109 and S. lividans TK64 using pUC18 and pIJ702 as vectors respectively. The recombinant plasmids pSD103 and pSD105 expressed the reductase gene and exported the enzyme in periplasmic space of E. coli and in cytoplasm of S. lividans TK64. The proteins expressed by E. coli and S. lividans had the same molecular mass (70 kD) as that expressed by parent strain, which suggested that the enzyme was processed similarly by all strains. Activities of the enzymes cloned in E. coli JM109 and S. lividans TK64 containing recombinant plasmids pSD103 and pSD105 respectively were optimum at 30 degrees C and pH 9 and requirement of cofactors was same as that of the parent strain.  相似文献   

20.
Abstract A modified Chelex 100 ion-exchange extraction method was used to monitor streptomycete spores, streptomycete mycelia and Salmonella in soil. Salmonella dusseldorf in soil was inhibited by the bactericidal effect of streptomycin and by the growth of Streptomyces bikiniensis . The soil used in the experiments exerted an antimicrobial effect on S. dusseldorf .
Competition between S. dusseldorf, Streptomyces lividans TK24 and Stm. bikiniensis ATCC 11062 was monitored in soil. In sterile amended soil Stm. lividans increased the survival of S. dusseldorf , whereas survival was reduced in the presence of the known streptomycin producer, Stm. bikiniensis . In the presence of S. dusseldorf the production of spores and mycelia by Stm. bikiniensis was reduced, and Stm. lividans sporulation was reduced but mycelia production increased. Evidence was seen for a beneficial effect between S. dusseldorf and Stm. lividans mycelia.
In non-sterile unamended soil the survival of S. dusseldorf was increased in the presence of Stm. lividans , whereas Stm. bikiniensis had no effect. Stm. lividans and Stm. bikiniensis reduced the survival of S. dusseldorf in non-sterile amended soil, with the most dramatic reduction caused by Stm. bikiniensis . No such changes in the survival of S. dusseldorf were observed with non-sterile amended soil that had been treated with sludge. The presence of sludge in unamended soil increased the rate of Salmonella die-off. In unamended soil containing sludge the presence of Stm. lividans increased the survival of S. dusseldorf , whereas survival was reduced in the presence of Stm. bikiniensis . The data provided evidence of antibiosis in soil, relating to the possible production of streptomycin by Stm. bikiniensis .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号