首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the rod-shaped Gram-negative bacterium Escherichia coli, changes in cell shape have critical consequences for motility, immune system evasion, proliferation and adhesion. For most bacteria, the peptidoglycan cell wall is both necessary and sufficient to determine cell shape. However, how the synthesis machinery assembles a peptidoglycan network with a robustly maintained micron-scale shape has remained elusive. To explore shape maintenance, we have quantified the robustness of cell shape in three Gram-negative bacteria in different genetic backgrounds and in the presence of an antibiotic that inhibits division. Building on previous modelling suggesting a prominent role for mechanical forces in shape regulation, we introduce a biophysical model for the growth dynamics of rod-shaped cells to investigate the roles of spatial regulation of peptidoglycan synthesis, glycan-strand biochemistry and mechanical stretching during insertion. Our studies reveal that rod-shape maintenance requires insertion to be insensitive to fluctuations in cell-wall density and stress, and even a simple helical pattern of insertion is sufficient for over sixfold elongation without significant loss in shape. In addition, we demonstrate that both the length and pre-stretching of newly inserted strands regulate cell width. In sum, we show that simple physical rules can allow bacteria to achieve robust, shape-preserving cell-wall growth.  相似文献   

2.
3.
4.
Mechanisms and regulation of reduction-based iron uptake in plants   总被引:14,自引:0,他引:14  
Despite the usually high abundance of iron (Fe) in soils, the low solubility of Fe-bearing minerals restricts the available Fe pools in most aerobic soils to levels that are far below those required for microbial or plant growth. To acquire the necessary amounts of Fe from the environment, organisms have evolved mechanisms that enhance the solubility and dissolution rate of Fe(iii) oxyhydroxides prevailing in aerobic soils. Chemically, these mechanisms are based on weakening of the Fe–O bond by reduction, chelation and protonation. Physiologically, two distinct and in all known cases mutually exclusive strategies can be distinguished: the excretion of siderophores capable of solubilizing external ferric Fe and subsequent uptake of the ferric siderophore complex; and reduction of Fe(iii) prior to uptake of the more soluble Fe2+ ion. With the exception of graminaceous species, in which Fe uptake is based on the former mechanism, the latter strategy is found in all cormophytes and certain algae, yeast and bacteria. In higher plants, the increase in their capacity to convert extracellular ferric to ferrous Fe is part of a series of physiological and morphological events that act in concert to achieve appropriate internal levels of Fe. It is this amalgam of features that determines the Fe efficiency of a species or cultivar that in turn affects the yield of economically important plants and the natural distribution of species. Adaptive changes to limited Fe availability have been studied at the molecular, physiological and whole-plant level. This review summarises current knowledge of the components of reduction-based Fe uptake in plants and presents an integrated view of the present understanding of mechanisms that control the rate and extent of Fe absorption by roots.  相似文献   

5.
Shigella dysenteriae serotype 1, a major cause of bacillary dysentery in humans, can use heme as a source of iron. Genes for the transport of heme into the bacterial cell have been identified, but little is known about proteins that control the fate of the heme molecule after it has entered the cell. The shuS gene is located within the heme transport locus, downstream of the heme receptor gene shuA. ShuS is a heme binding protein, but its role in heme utilization is poorly understood. In this work, we report the construction of a chromosomal shuS mutant. The shuS mutant was defective in utilizing heme as an iron source. At low heme concentrations, the shuS mutant grew slowly and its growth was stimulated by either increasing the heme concentration or by providing extra copies of the heme receptor shuA on a plasmid. At intermediate heme concentrations, the growth of the shuS mutant was moderately impaired, and at high heme concentrations, shuS was required for growth on heme. The shuS mutant did not show increased sensitivity to hydrogen peroxide, even at high heme concentrations. ShuS was also required for optimal utilization of heme under microaerobic and anaerobic conditions. These data are consistent with the model in which ShuS binds heme in a soluble, nontoxic form and potentially transfers the heme from the transport proteins in the membrane to either heme-containing or heme-degrading proteins. ShuS did not appear to store heme for future use.  相似文献   

6.
Plesiomonas shigelloides is an intestinal pathogen that uses heme as an iron source. The P. shigelloides heme utilization system consists of 10 genes, 7 of which permit heme transport and 3 of which are associated with utilization of heme as an iron source once it is inside the cell. The goal of this study was to examine hugZ, 1 of the 3 genes associated with utilization of heme iron. DPH8, a hugZ mutant, failed to grow to full cell density in media containing heme as the iron source, indicating that hugZ is required for heme iron utilization. Western blots using antibodies against Vibrio cholerae HutZ to detect the P. shigelloides HugZ indicated that hugZ encodes an iron-regulated cytoplasmic protein, which is absent in DPH8. A heme affinity bead assay performed on soluble protein fractions from P. shigelloides DPH8/pHUG24.5 (pHUG24.5 encodes hugZ) indicated that HugZ binds heme. Heme utilization was restored in DPH8 by hox1, which encodes the alpha-heme oxygenase from Synechocystis sp. strain PCC6803. However, HugZ did not exhibit alpha-heme oxygenase activity in an assay that detects the conversion of heme to the bilin functional group present in phycobiliproteins. These results do not rule out that HugZ exhibits another type of heme oxygenase activity not detected in the assay.  相似文献   

7.
One component of the anti-microbial function of lactoferrin (Lf) is its ability to sequester iron from potential pathogens. To overcome this iron limitation, a number of gram-negative bacterial pathogens have developed a mechanism for acquiring iron directly from this host glycoprotein. This mechanism involves surface receptors capable of specifically binding Lf from the host, removing iron and transporting it across the outer membrane. The iron is then bound by a periplasmic iron-binding protein, FbpA, and transported into the cell via an inner membrane complex comprised of FbpB and FbpC. The receptor has been shown to consist of two proteins, LbpA and LbpB. LbpB is bilobed lipoprotein anchored to the outer membrane via fatty acyl groups attached to the N-terminal cysteine. LbpA is a homologue of siderophore receptors, which consist of an N-terminal plug and a C-terminal beta-barrel region. We propose that the receptor proteins, LbpA and LbpB, induce conformational changes in human Lf (hLf) that lower its affinity for iron that binding by FbpA can drive the transport across the outer membrane, a mechanism shared with transferrin (Tf) receptors. The interaction between the receptor proteins and Lf is quite extensive and has been previously studied by using chimeric proteins comprised of Lf & Tf. In an attempt to evaluate the role of FbpA in the transport process, a series of site-directed mutants of FbpA were prepared and used to replace the wild-type protein in the iron acquisition pathway. The mutations were made in the iron-binding and anion-binding ligands of FbpA and were designed to result in altered binding properties. Protein crystallography of the iron-bound form of the Q58L mutant protein revealed that it was in the open conformation with iron coordinated by Y195 and Y196 from the C-terminal domain but not by the other iron-liganding amino acids from the N-terminal domain, H9 and E57. Replacement of the native FbpA in Neisseria meningitidis with wild-type or mutant Haemophilus influenzae FbpAs resulted in a defect in growth on Tf or Lf, suggesting that there may be a barrier to functional expression of H. influenzae FbpAs in Neisseria meningitidis. Thus mutants of the N. meningitidis FbpA are being prepared to replace wild-type protein in order to test their ability to mediate transport from hLf.  相似文献   

8.
Mechanisms of siderophore iron transport in enteric bacteria.   总被引:32,自引:19,他引:13       下载免费PDF全文
Uptake of 55Fe- and 3H-labeled siderophores and their chronic analogues have been studied in Salmonella typhimurium LT-2 and Escherichia coli K-12. In S. typhimurium LT-2, at least two different mechanisms for siderophore iron transport may be operative. Uptake of 55Fe- and 3H-labeled ferrichrome and kinetically inert lambda-cis-chromic [3H]deferriferrichrome by the S. typhimurium LT-2 enb7 mutant, which is defective in the production of its native siderophore, enterobactin, appears to occur by two concurrent mechanisms. The first mechanism is postulated to involve either rapid uptake of iron released from the ferric complex by cellular reduction without penetration of the complex or ligand or dissociation of the complex and simultaneous uptake of both ligand and iron coupled with simultaneous expulsion of the ligand. The second mechanism appears to consist of slower uptake of the intact ferric complex.  相似文献   

9.
The ability of Gram-negative bacteria to degrade morpholine when growing in pure culture is reported for the first time. Several bacterial strains were able to degrade morpholine and to utilize it as a sole nitrogen source but not as a sole carbon and energy source. The organisms studied were obtained from river water and activated sludge and could not be isolated directly on morpholine-containing media which always yielded growth of Gram-positive bacteria using morpholine as a carbon and energy source. The Gram-negative strains were isolated on the basis of their ability to grow on the structurally-related heterocyclc amines piperidine and pyrrolidine.  相似文献   

10.
Quorum-sensing in Gram-negative bacteria   总被引:17,自引:0,他引:17  
It has become increasingly and widely recognised that bacteria do not exist as solitary cells, but are colonial organisms that exploit elaborate systems of intercellular communication to facilitate their adaptation to changing environmental conditions. The languages by which bacteria communicate take the form of chemical signals, excreted from the cells, which can elicit profound physiological changes. Many types of signalling molecules, which regulate diverse phenotypes across distant genera, have been described. The most common signalling molecules found in Gram-negative bacteria are N-acyl derivatives of homoserine lactone (acyl HSLs). Modulation of the physiological processes controlled by acyl HSLs (and, indeed, many of the non-acyl HSL-mediated systems) occurs in a cell density- and growth phase-dependent manner. Therefore, the term 'quorum-sensing' has been coined to describe this ability of bacteria to monitor cell density before expressing a phenotype. In this paper, we review the current state of research concerning acyl HSL-mediated quorum-sensing. We also describe two non-acyl HSL-based systems utilised by the phytopathogens Ralstonia solanacearum and Xanthomonas campestris.  相似文献   

11.
Pulse-chase analysis of newt (Triturus cristatus) erythroblasts has shown that ferritin is not a primary source of iron for heme synthesis. During chase incubation with and without non-radioactive plasma iron in the medium, no transfer of 59Fe from ferritin to hemoglobin was detected although the integrity of heme synthesis was maintained. In puromycin-inhibited cells where iron uptake was drastically curtailed, heme synthesis continued to occur, though at reduced levels; incorporation of 59Fe from the plasma appeared initially in heme and hemoglobin without any prior labelling of ferritin. These results indicate that ferritin is neither an obligatory iron intermediate in heme synthesis nor a cytosolic transport molecule involved in mobilization of iron from the transferrin-receptor complex. The most likely role for erythroid ferritin is storage of excess iron.  相似文献   

12.
13.
Y. pestis, the causative agents of plague, have been found to be incapable of using heme iron bound to haptoglobin and hemopexin complexes in human blood and blood serum, and protein components of the serum are not the factors inhibiting this process. At the same time iron of free hemoglobin can be successfully utilized by Y. pestis in the systems used in this study. On the contrary, hemin not only produces any stimulating effect on the growth of Y. pestis in blood serum, but leads to the death of these bacteria [correction of lasteria].  相似文献   

14.
Bacteria have been found in all niches explored on Earth, their ubiquity derives from their enormous metabolic diversity and their capacity to adapt to changes in the environment. Some bacterial strains are able to thrive in the presence of high concentrations of toxic organic chemicals, such as aromatic compounds, aliphatic alcohols and solvents. The extrusion of these toxic compounds from the cell to the external medium represents the most relevant aspect in the solvent tolerance of bacteria, however, solvent tolerance is a multifactorial process that involves a wide range of genetic and physiological changes to overcome solvent damage. These additional elements include reduced membrane permeabilization, implementation of a stress response programme, and in some cases degradation of the toxic compound. We discuss the recent advances in our understanding of the mechanisms involved in solvent tolerance.  相似文献   

15.
Plesiomonas shigelloides is a gram-negative pathogen which can utilize heme as an iron source. In previous work, P. shigelloides genes which permitted heme iron utilization in a laboratory strain of Escherichia coli were isolated. In the present study, the cloned P. shigelloides sequences were found to encode ten potential heme utilization proteins: HugA, the putative heme receptor; TonB and ExbBD; HugB, the putative periplasmic binding protein; HugCD, the putative inner membrane permease; and the proteins HugW, HugX, and HugZ. Three of the genes, hugA, hugZ, and tonB, contain a Fur box in their putative promoters, indicating that the genes may be iron regulated. When the P. shigelloides genes were tested in E. coli K-12 or in a heme iron utilization mutant of P. shigelloides, hugA, the TonB system genes, and hugW, hugX, or hugZ were required for heme iron utilization. When the genes were tested in a hemA entB mutant of E. coli, hugWXZ were not required for utilization of heme as a porphyrin source, but their absence resulted in heme toxicity when the strains were grown in media containing heme as an iron source. hugA could replace the Vibrio cholerae hutA in a heme iron utilization assay, and V. cholerae hutA could complement a P. shigelloides heme utilization mutant, suggesting that HugA is the heme receptor. Our analyses of the TonB system of P. shigelloides indicated that it could function in tonB mutants of both E. coli and V. cholerae and that it was similar to the V. cholerae TonB1 system in the amino acid sequence of the proteins and in the ability of the system to function in high-salt medium.  相似文献   

16.
17.
This report describes several key aspects of a novel form of RecA-independent homologous recombination. We found that synthetic single-stranded DNA oligonucleotides (oligos) introduced into bacteria by transformation can site-specifically recombine with bacterial chromosomes in the absence of any additional phage-encoded functions. Oligo recombination was tested in four genera of Gram-negative bacteria and in all cases evidence for recombination was apparent. The experiments presented here were designed with an eye towards learning to use oligo recombination in order to bootstrap identification and development of phage-encoded recombination systems for recombineering in a wide range of bacteria. The results show that oligo concentration and sequence have the greatest influence on recombination frequency, while oligo length was less important. Apart from the utility of oligo recombination, these findings also provide insights regarding the details of recombination mediated by phage-encoded functions. Establishing that oligos can recombine with bacterial genomes provides a link to similar observations of oligo recombination in archaea and eukaryotes suggesting the possibility that this process is evolutionary conserved.  相似文献   

18.
19.
Over the last decade or so, a wealth of research has established that bacteria communicate with one another using small molecules. These signals enable the individuals in a population to coordinate their behaviour. In the case of pathogens, this behaviour may include decisions such as when to attack a host organism or form a biofilm. Consequently, such signalling systems are excellent targets for the development of new antibacterial therapies. In this review, we assess how Gram-negative bacteria use small molecules for cell-cell communication, and discuss the main approaches that have been developed to interfere with it.  相似文献   

20.
Multidrug resistance in Gram-negative bacteria   总被引:4,自引:0,他引:4  
Broadly specific, so-called multidrug, efflux mechanisms are now known to contribute significantly to intrinsic and acquired multidrug resistance in a number of Gram-negative bacteria, and the boom in bacterial genomics has confirmed the distribution of these systems in all bacteria. This broad distribution of multidrug transporters lends a certain credibility to suggestions that they play a housekeeping role in the cell, beyond any contributions they may make to antimicrobial efflux and resistance. In many instances, these transporters are dispensable, arguing against their carrying out essential cellular functions; nevertheless, the multiplicity of these broadly specific export systems within a given microorganism, often with overlapping substrate specificity, may explain the dispensability of individual exporters. Whatever their intended function, however, their conservation in so many organisms highlights their probable general importance in antimicrobial resistance, particularly in Gram-negative bacteria whose outer membranes work synergistically with many of these export systems to promote drug exclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号