首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fasciola hepatica, the liver fluke, secretes a cathepsin L cysteine proteinase. The enzyme is active over the pH range 5-9 and is remarkably stable at 37 degrees C, pH 7.0, in contrast to mammalian cathepsin Ls that are active in the acidic pH range and are inactivated within 15 min at neutral pH. The liver fluke proteinase is also very tolerant of organic solvents, particularly dimethylformamide. However, it is completely inactivated by 1 mM Hg(2+) and adversely affected by other heavy metals and divalent cations. Addition of glycerol and EDTA enhanced the liver fluke enzyme's stability at 50 degrees C, while glucose and glycerol protected the enzyme from inactivation by repeated freeze-thawing. The high stability of liver fluke cathepsin L suggests that it may have potential for use in bioindustrial applications.  相似文献   

2.
A latent cysteine proteinase has been found in the pleural effusion fluid of patients with breast cancer. It can be converted by pepsin to an active form, the properties of which, including the pH optimum, pH stability, substrate specificity, and sensitivity to various proteinase inhibitors, were found to be closely related to those of cathepsin B. Unlike the pepsin-generated enzyme, which was rapidly inactivated above pH 7.0, the latent enzyme showed substantially higher stability in the region around and above neutral pH. The apparent Mr values of the latent and pepsin-generated enzyme forms were approximately 45,000 and 32,000, respectively. Both enzyme forms exhibited heterogeneous binding affinity to concanavalin A-Sepharose 4B. Altogether, our results demonstrate that a latent cathepsin B form occurs in vivo in pleural effusions of breast cancer patients.  相似文献   

3.
Cathepsin S was detected in bovine kidney, spleen, lymph nodes and lung by immunochemical methods. The immunostaining of cathepsin S in kidney was concentrated to the cells of the proximal tubule, where the enzyme was present in cytoplasmic granules. The purification method for cathepsin S from bovine spleen involved (NH4)2SO4 fractionation, chromatography on CM-Sephadex C-50, gel filtration on Sephacryl S-200 and chromatofocusing (pH 8.0-6.0). The enzyme was partially destroyed by autolysis of the homogenate at pH 4.2. The isoelectric point of cathepsin S was 7.0. Cathepsin S was found to hydrolyse proteins at a similar rate to cathepsin L below pH 7.0. At pH values of 7.0-7.5 cathepsin S retained most of its activity, whereas cathepsin L was completely inactive.  相似文献   

4.
Kudoa paniformis and Kudoa thyrsites (Myxozoa: Myxosporea) infections are associated with severe proteolysis of host muscle tissue post-mortem. The present study was undertaken to identify and characterize the protease responsible for myoliquefaction and determine mechanisms controlling protease function in vivo. N-terminal sequence analysis of partially purified protease from hake muscle infected with K. paniformis and K. thyrsites revealed a 23 amino acid sequence that aligned with cysteine proteases. Enzyme inhibition assays confirmed the presence of an essential active site cysteine residue. Using the above K. paniformis amino acid sequence data, a corresponding cDNA sequence from K. thyrsites plasmodia was elucidated revealing a cathepsin L proenzyme (Kth-CL). The translated amino acid sequence lacked a signal sequence characteristic of lysosomal and secreted proteins suggesting a unique cytoplasmic location. Only the proenzyme form of Kth-CL was present in Atlantic salmon muscle anti-mortem but this form became processed in vivo when infected muscle was stored at 4 degrees C. The proenzyme of Kth-CL showed uninhibited activity at pH 6.0, negligible activity at pH 6.5 and no measurable activity at pH 7.0 whilst the processed protease showed stability and function over a broad pH range (pH 4.5-8.8). The pH dependent processing and function of Kth-CL was consistent with histidine residues in the proregion playing a critical role in the regulation of Kth-CL.  相似文献   

5.
An insoluble preparation of rat liver cathepsin D was obtained by coupling the enzyme to Enzacryl Polyacetal (EPA-cathepsin) and to CNBr-activated Sepharose 4B. EPA-cathepsin was active toward the synthetic hexapeptides (Gly-Phe-Leu)2 and did not split hemoglobin. The optimum pH of splitting was displaced upward by 1.5 units to pH 5.0. The enzyme exhibited maximum activity at 60 degrees C. No appreciable loss of activity was seen on storage of the enzyme for 4 months or after repeated use of the preparations. Coupling of rat liver cathepsin D to activated Sepharose gave preparations active towards both protein and synthetic substrates. The preparations were totally inactive in acid media and exhibited maximum activity at pH 7.0, that is, under physiological conditions. Optimum temperature was 65 degrees. The specific activity of the preparations (pH 7.0, 65 degrees) was 60-110 percent that of the free enzyme in acid media. Proteolytic activity of the Sepharose-coupled cathepsin D was not inhibited by pepstatin, whereas that of the free enzyme was fully inhibited by this reagent. A sarcoma cathepsin, similar in some of its properties to the rat liver enzyme, was also coupled to CNBr-activated Sepharose 4B. The preparation split protein substrates at pH 7.0 and possessed enhanced thermostability. The enzymes fixed on Sepharose showed increased stability.  相似文献   

6.
T Fox  E de Miguel  J S Mort  A C Storer 《Biochemistry》1992,31(50):12571-12576
A peptide (PCB1) corresponding to the proregion of the rat cysteine protease cathepsin B was synthesized and its ability to inhibit cathepsin B activity investigated. PCB1 was found to be a potent inhibitor of mature cathepsin B at pH 6.0, yielding a Ki = 0.4 nM. This inhibition obeyed slow-binding kinetics and occurred as a one-step process with a k1 = 5.2 x 10(5) M-1 s-1 and a k2 = 2.2 x 10(-4) s-1. On dropping from pH 6.0 to 4.7, Ki increased markedly, and whereas k1 remained essentially unchanged, k2 increased to 4.5 x 10(-3) s-1. Thus, the increase in Ki at lower pH is due primarily to an increased dissociation rate for the cathepsin B/PCB1 complex. At pH 4.0, the inhibition was 160-fold weaker (Ki = 64 nM) than at pH 6.0, and the propeptide appeared to behave as a classical competitive inhibitor rather than a slow-binding inhibitor. Incubation of cathepsin B with a 10-fold excess of PCB1 overnight at pH 4.0 resulted in extensive cleavage of the propetide whereas no cleavage occurred at pH 6.0, consistent with the formation of a tight complex between cathepsin B and PCB1 at the higher pH. The synthetic propeptide of cathepsin B was found to be a much weaker inhibitor of papain, a structurally similar cysteine protease, and no pH dependence was observed. Inhibition constants of 2.8 and 5.6 microM were obtained for papain inhibition by PCB1 at pH 4.0 and 6.0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cysteine proteinase inhibitors isolated from rat and human epidermis were purified to homogeneity and had isoelectric points of pH 4.31 and pH 5.10, respectively, Both inhibitors caused noncompetitive inhibition to the same degree against papain (EC 3.4.22.2), but the activity of human inhibitor against rat liver cathepsins B (EC 3.4.22.1), H (EC 3.4.22.16), and L (EC 3.422.-) was more effective than that of rat inhibitor. Dependency on pH was observed with rat inhibitor for cathepsins B and H, and with human inhibitor for cathepsin L. The reaction of the inhibitors with papain and cathepsins H and L occurred immediately, while the inhibition reaction of cathepsin B increased progressively during a preincubation time up to 40 min. Incubation at pH 7.0 maximized the progressive inhibitory activity. These findings demonstrate that cysteine proteinase inhibitors from rat and human epidermis inhibited a variety of cysteine proteinases. However, the inhibitor and enzyme interaction depends upon the enzyme, inhibitor source, and experimental conditions such as pH and preincubation time.  相似文献   

8.
Drought increased the pH of Commelina communis xylem sap from 6.1 to 6.7. Conductances of transpiring leaves were 50% lower in pH 7.0 than in pH 6.0 buffers, but bulk leaf abscisic acid (ABA) concentration and shoot water status were unaffected by pH. Stomatal apertures of isolated abaxial epidermis incubated on simple buffers increased with external pH, so in vivo this must be overridden by alternative pH effects. Reductions in leaf transpiration rate at pH 7.0 were dependent on the presence of 10-8 mol dm-3 ABA in the xylem stream. We inferred that at pH 7.0 leaf apoplastic ABA concentrations increased: pH did not affect distributions of ABA among leaf tissues, but isolated epidermis and mesophyll tissue took up more 3H-ABA from pH 6.0 than from pH 7.0 buffers. The apoplastic ABA increase at pH 7.0 may result from reduced symplastic sequestration. A portion of 3H-ABA uptake by the epidermis was saturable at pH 6.0 but not at pH 7.0. An ABA uptake carrier may contribute to ABA sequestration by the leaf symplast of well-watered plants, and its inactivity at pH 7.0 may favor apoplastic ABA accumulation in draughted plants. Effects of external pH on stomatal apertures in the isolated epidermis indicate that published data supporting a role for internal guard cell ABA receptors should be reassessed.  相似文献   

9.
Cathepsin B was cytochemically investigated in the cells of synovial membranes and in the cell pellet of synovial fluids obtained from 50 patients with rheumatoid arthritis and eight patients with various nonrheumatoid arthropathies. The activity of Cathepsin B was estimated by using the substrate N-alpha-benzoyl-DL-arginine-naphthylamide HCl and diazoic dye Fast Corinth V in phosphate buffer pH 6.0 in the presence of EDTA and cysteine. A significant activity of cathepsin B was shown in lining mesothelial cells, in macrophages of the submesothelial infiltrations, as well as in fibroblasts prominent in the deep areas of rheumatoid synovial membranes. In the cell pellets of synovial fluids the highest activity of cathepsin B was found in the macrophages and polymorphonuclear leukocytes, accompanied by a variable activity in lymphocytes. The considerable activity of cathepsin B, an enzyme with degradative action upon collagen and proteoglycans, in the main cellular populations of rheumatoid synovial membranes and fluids, suggests its involvement in the genesis and maintenance of rheumatoid lesions.  相似文献   

10.
《Insect Biochemistry》1990,20(3):313-318
The larval midgut of the Colorado beetle, Leptinotarsa decemlineata contains cathepsin B, D and H activity detected by use of haemoglobin, synthetic substrates specific for each enzyme, pH at which the substrate was maximally hydrolysed and effects of potential activators and inhibitors on proteolytic activity. Cysteine proteases cathepsin B, and H were activated by thiol compounds and inhibited by iodoacetamide, TLCK and epoxysuccinyl-leucyl-amido(guanidino)butane (E-64) a cysteine specific proteinase inhibitor. Cathepsin B was distinguished from H by hydrolysis of benzoyloxycarbonyl-Ala-Arg-Arg-methoxynaphthylamide, a cathepsin B specific substrate and inhibition of substrate hydrolysis by leupeptin. Cathepsin H activity, detected using the specific substrate arginine-naphthylamide, was insensitive to leupeptin. Cathepsin D had maximal activity at pH 4.5 and was inhibited by pepstatin, an aspartic proteinase inhibitor.  相似文献   

11.
Macrophages actively internalize macromolecules into endosomal vesicles containing proteases. The plant toxin, ricin A chain delivered into this pathway by receptor-mediated endocytosis, was found to be exquisitely sensitive to cleavage by these proteases. Proteolytic fragments of ricin A chain were generated within cells as early as 2-3 min after internalization. Toxin proteolysis was initiated in early endosomal vesicles, and transport to lysosomes was not required. As endosomes transit the cell, their lumenal pH drops from neutral to acidic. Previous studies in macrophages had suggested that endosomal proteolysis is dependent on vesicle acidification. Isolated endosomal vesicles containing ricin A chain catalyzed the cleavage of this protein in vitro; however, proteolysis was observed at both neutral and acidic pH. Experiments using isolated endosomes demonstrated that both cysteine and aspartyl proteases were responsible for the cleavage of ricin A chain. The cysteine protease, cathepsin B, catalyzed toxin proteolysis in endosomes between pH 4.5 and 7.0 while aspartyl protease activity was maximal below pH 5.5. Radiolabeling the lumenal contents of macrophage endosomes confirmed that both the cysteine protease, cathepsin B, and the aspartyl protease, cathepsin D, were present in these vesicles. These proteases were not present on the plasma membrane but were found in early endosomes indicating they are derived from an intracellular source. The presence of proteases with different pH optima in early endosomes suggests that processing in these vesicles may be regulated by changes in endosomal pH. This result represents an important difference in protein processing in endosomes versus lysosomes and provides new insights into the function of endosomal proteases.  相似文献   

12.
Brömme D  Li Z  Barnes M  Mehler E 《Biochemistry》1999,38(8):2377-2385
Cathepsin V, a thymus and testis-specific human cysteine protease, was expressed in Pichia pastoris, and its physicokinetic properties were determined. Recombinant procathepsin V is autocatalytically activated at acidic pH and is effectively inhibited by various cysteine protease class-specific inhibitors. The S2P2 subsite specificity of cathepsin V was found to be intermediate between those of cathepsins S and L. The substrate binding pocket, S2, accepted both aromatic and nonaromatic hydrophobic residues, whereas cathepsins L and S preferred either an aromatic or nonaromatic hydrophobic residue, respectively. In contrast to cathepsin L, but similar to cathepsin S, cathepsin V exhibited only a very weak collagenolytic activity. Furthermore, cathepsin V was determined to be significantly more stable at mildly acidic and neutral pH than cathepsin L, but distinctly less stable than cathepsin S. A homology structure model of cathepsin V revealed completely different electrostatic potentials on the molecular surface when compared with human cathepsin L. The model-based electrostatic potential of human cathepsin V was neutral to weakly positive at and in the vicinity of the active site cleft, whereas that of cathepsin L was negative over extended regions of the surface. Surprisingly, the electrostatic potential of the human cathepsin V model structure resembled that of the model structure of mouse cathepsin L. These differences in the electrostatic potential at the molecular surfaces provide a reactivity determinant that may be the source of differences in substrate selectivity and pH stability. Cathepsin V was mapped to the chromosomal region 9q22.2, a site adjacent to the cathepsin L locus. The high sequence identity and the overlapping chromosomal gene loci suggest that both proteases evolved from an ancestral cathepsin L-like precursor by gene duplication.  相似文献   

13.
The potential for branched-chain 2-oxo acid dehydrogenase complex (BCOADC) activity to be controlled by feedback inhibition was investigated by calculating the Elasticity Coefficients for several feedback inhibitors. We suggest that feedback inhibition is a quantitatively important regulatory mechanism by which branched-chain 2-oxo acid dehydrogenase activity is regulated. The potential for control of enzyme activity is greater for NADH than for the acyl-CoA products, and suggests that factors that alter the redox potential may physiologically regulate BCOADC activity through a feedback inhibitory mechanism in vivo. Local pH may also be an important regulatory control factor.  相似文献   

14.
Studies with partially purified extracts of the nicotinamide adenine dinucleotide-linked l(+)-lactate dehydrogenase of Streptococcus cremoris US3 showed that fructose-1,6-diphosphate (FDP) was essential for the catalytic reduction of pyruvate in the pH range 5.0 to 7.0, outside of which the organism does not grow. In the absence of FDP, enzyme activity was observed only in the region of pH 8.0. The optimal pH for the oxidation of lactate was approximately 8.0 in the presence and absence of FDP. The FDP-activated enzyme was markedly inhibited by inorganic phosphate. The enzyme lost activity on standing at 5 C in alkaline triethanolamine, was quite stable at pH 6.0 to 6.5, and underwent irreversible denaturation below pH 5.0. Inorganic phosphate or FDP increased the stability of the enzyme in alkaline buffers. Some distinguishing properties of individual lactate dehydrogenases, activated by FDP, are discussed.  相似文献   

15.
A previously described “major acidic proteinase” of adult Schistosoma mansoni, believed to play a key role in the parasite's metabolism, has been identified as a cathepsin B (Sm31). Purified Sm cathepsin B was not recognized by anti-Sm32 or anticathepsin L antibodies. The enzyme hydrolyzes the synthetic protease substrates Z-Arg-Arg-AMC and Z-Phe-Arg-AMC as well as protein substrates. Its pH optimum is 3.0 with serum albumin, 4.0–5.0 with globin and 5.5–6.0 with the synthetic substrates. The enzyme was inactivated by cysteine proteinase inhibitors. Its activity against protein substrates would support the hypothesis that it plays a role in schistosome nutrition.  相似文献   

16.
BACKGROUND: Cathepsin S is a member of the family of cysteine lysosomal proteases preferentially expressed in macrophages and microglia and is active after prolonged incubation in neutral pH. Upon activation of macrophages by a number of inflammatory mediators, there is an increase in secreted cathepsin S activity accompanied by a decrease in cellular cathepsin S activity and protein content, as well as a decrease in cathepsin S mRNA. The decrease in cathepsin S mRNA and protein at the cellular level is in contrast to the response observed in some in vivo scenarios. MATERIALS AND METHODS: We investigated the effect of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF), two growth factors present during cell injury and inflammation but not known to activate macrophages and microglia, on the expression of cathepsin S, cathepsin B, and cathepsin L mRNAs in these cells, and on cathepsin S activity. We then tested the ability of cathepsin S to degrade myelin basic protein, and amyloid beta peptide at both acidic and neutral pH. RESULTS: Basic FGF and NGF treatment of macrophages and microglia significantly increased the levels of cathepsin S, B, and L mRNAs (2- to 5-fold). Basic FGF also increased cathepsin S activity intra- and extracellularly. Recombinant human cathepsin S was able to degrade myelin basic protein and monomeric and dimeric amyloid beta peptide at both acidic and neutral pH, as well as to process human amyloid precursor protein generating amyloidogenic fragments. CONCLUSIONS: These data suggest that bFGF and NGF may be the molecular signals that positively regulate the expression and activity of cysteine lysosomal proteases (cathepsin S in particular) in macrophages and microglia in vivo, and that there is an interplay between these factors and the activators of inflammation. Disruption of the balance between these two categories of signals may underlie the pathological changes that involve cysteine proteases. http://link.springer-ny.com/link/service/journals/00020/bibs /5n5p334. html  相似文献   

17.
We studied the dependence of activity and stability of proteolytic enzymes in salmon roe on pH and temperature. The activity of proteolytic enzymes in roe was primarily determined by proteinases. These enzymes were active at acid pH and had an optimum of 3.6. A study of subclasses of proteolytic enzymes in salmon roe and the published data suggest that the activity of proteinases may be related to the presence of aspartyl proteinases (cathepsin D). Serine proteinases and metalloenzymes were not found in roe. The activity of cysteine proteinases was low. The proposed conditions of pasteurization favored the complete inactivation of salmon roe at pH 6.0-6.4.  相似文献   

18.
We studied the dependence of activity and stability of proteolytic enzymes in salmon roe on pH and temperature. The activity of proteolytic enzymes in roe was primarily determined by proteinases. These enzymes were active at acid pH and had an optimum of 3.6. A study of subclasses of proteolytic enzymes in salmon roe and the published data suggest that the activity of proteinases may be related to the presence of aspartyl proteinases (cathepsin D). Serine proteinases and metalloenzymes were not found in roe. The activity of cysteine proteinases was low. The proposed conditions of pasteurization favored the complete inactivation of salmon roe at pH 6.0–6.4.  相似文献   

19.
Human cathepsin K (EC 3.4.22.38) is a member of the cysteine protease family with high primary sequence homology to cathepsins S, L, and B. It has been shown that cathepsin K plays a major role in the resorption of the bone matrix by osteoclasts. Cathepsin K has a potential as a drug target for the diseases related to bone matrix metabolism such as osteoporosis. We have expressed recombinant human procathepsin K in Escherichia coli as inclusion bodies. Purified procathepsin K had size of 38kDa which is in agreement with the predicted mass of the construct. Refolding was done by rapid dilution into 50mM Tris-HCl, pH 8.0 buffer containing 5mM EDTA, 10 mM GSH, 1mM GSSG, 0.7 M L-arginine, 0.5 M NaCl, and 1% CHAPS and further dialysis against 25 mM Tris-HCl, pH 8.0 containing 0.5 M NaCl. Mature active cathepsin K was prepared from refolded procathepsin K by incubating at 40 degrees C in pH 4.0 buffers with or without pepsin or cysteine. The presence of pepsin or cysteine in autocatalysis buffer did not have effect on the degree of conversion of nascent to mature cathepsin K, but reduced the autocatalysis time slightly. Proteolytic activity was confirmed using synthetic substrate, and Western blotting identified mature cathepsin K. Active cathepsin K had type I and II collagenolytic activities which could be inhibited by E-64.  相似文献   

20.
Entamoeba histolytica: purification of cathepsin B   总被引:4,自引:0,他引:4  
A cytotoxic cysteine proteinase with a molecular weight of 16,000 was isolated from axenically grown trophozoites of Entamoeba histolytica. The enzyme was purified from frozen-thawed strain HM-1 by ion-exchange chromatography on DEAE-cellulose, organomercurial agarose affinity chromatography, and size-exclusion chromatography. The purified enzyme had proteinase activity that could be demonstrated on azocasein (pH 5), hemoglobin (pH 5), or carbobenzoxy-L-arginyl--L-arginyl-7-amino-4-trifluoromethylcoumarin++ + (Z-arg-arg-AFC), a substrate specific for cathepsin B. Enzyme activity was stable to high pH, but not to 40 C for 1 hr or 56 C for 0.5 hr. As typical of cysteine proteinases, inhibition of activity on Z-arg-arg-AFC by p-chloromercuribenzoate or mercury was reversed by free sulfhydryl groups. Both the proteinase and cytotoxic activities of the purified amoebal cathepsin B were inhibited by leupeptin and serum and activated by free sulfhydryl groups, supporting the hypothesis that both activities are characteristics of amoebal cathepsin B. Virulent strains of E. histolytica (HM-1 and Rahman) had significantly more cathepsin B activity per milligram protein than less virulent strains (HK-9, Laredo, and Huff). The correlation between higher levels of cathepsin B activity in strains with greater virulence could indicate a role for amoebal cathepsin B in the pathogenesis of amoebiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号