首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normobaric oxygen (NBO) therapy is commonly applied for the treatment of various diseases, including myocardial infarctions, but its effectiveness is controversial. Potential adverse effects of hyperoxia are related to excessive formation of free radicals. In the present study we examined the effect of 60-h NBO treatment on lipid peroxidation (LPO), activity of manganese superoxide dismutase (Mn-SOD) and mitochondrial enzymes of energy metabolism in guinea pig heart. NBO treatment resulted in significant accumulation of thiobarbituric acid reactive substances and loss of Mn-SOD activity despite slight elevation of Mn-SOD protein content. Activity of electron transport chain complex III decreased significantly, while activity of complex IV was slightly elevated and citrate synthase was unchanged. LPO, inhibition of Mn-SOD and complex III activities were more pronounced when inhaled oxygen was partially enriched with superoxide radical. In contrast, when O(2) was enriched with oxygen cation (O(2)●+), LPO and loss of Mn-SOD activity were prevented. Complex III activity in the O(2)●+-treated group remained depressed but activities of complex IV and citrate synthase were elevated. These data suggest that NBO treatment is associated with myocardial oxidative damage and attenuation of antioxidant defense, but these adverse effects can be partially attenuated by inhalation of O(2) enriched with oxygen cation.  相似文献   

2.
Artificial selection in rat has yielded high-capacity runners (HCR) and low-capacity runners (LCR) that differ in intrinsic (untrained) aerobic exercise ability and metabolic disease risk. To gain insight into how oxygen metabolism may have been affected by selection, we compared mitochondrial function, oxidative DNA damage (8-dihydroxy-guanosine; 8dOHG), and antioxidant enzyme activities in soleus muscle (Sol) and gastrocnemius muscle (Gas) of adult and aged LCR vs. HCR rats. In Sol of adult HCR rats, maximal ADP-stimulated respiration was 37% greater, whereas in Gas of adult HCR rats, there was a 23% greater complex IV-driven respiratory capacity and 54% greater leak as a fraction of electron transport capacity (suggesting looser mitochondrial coupling) vs. LCR rats. H(2)O(2) emission per gram of muscle was 24-26% greater for both muscles in adult HCR rats vs. LCR, although H(2)O(2) emission in Gas was 17% lower in HCR, after normalizing for citrate synthase activity (marker of mitochondrial content). Despite greater H(2)O(2) emission, 8dOHG levels were 62-78% lower in HCR rats due to 62-96% higher superoxide dismutase activity in both muscles and 47% higher catalase activity in Sol muscle in adult HCR rats, with no evidence for higher 8 oxoguanine glycosylase (OGG1; DNA repair enzyme) protein expression. We conclude that genetic segregation for high running capacity has generated a molecular network of cellular adaptations, facilitating a superior response to oxidative stress.  相似文献   

3.
4.
Voltage-dependent anion channels (VDACs) form the main pathway for metabolites across the mitochondrial outer membrane. The mouse vdac1 gene has been disrupted by gene targeting, and the resulting mutant mice have been examined for defects in muscle physiology. To test the hypothesis that VDAC1 constitutes a pathway for ADP translocation into mitochondria, the apparent mitochondrial sensitivity for ADP (Km(ADP)) and the calculated rate of respiration in the presence of the maximal ADP concentration (Vmax) have been assessed using skinned fibers prepared from two oxidative muscles (ventricle and soleus) and a glycolytic muscle (gastrocnemius) in control and vdac1(-/-) mice. We observed a significant increase in the apparent Km((ADP)) in heart and gastrocnemius, whereas the V(max) remained unchanged in both muscles. In contrast, a significant decrease in both the apparent Km((ADP)) and V(max) was observed in soleus. To test whether VDAC1 is required for creatine stimulation of mitochondrial respiration in oxidative muscles, the apparent Km((ADP)) and Vmax were determined in the presence of 25 mm creatine. The creatine effect on mitochondrial respiration was unchanged in both heart and soleus. These data, together with the significant increase in citrate synthase activity in heart, but not in soleus and gastrocnemius, suggest that distinct metabolic responses to altered mitochondrial outer membrane permeability occur in these different striated muscle types.  相似文献   

5.
Delta-aminolevulinic acid (ALA), precursor of heme, accumulates in a number of organs, particularly in liver of patients with acute porphyrias or lead intoxication. This study characterizes the involvement of bilirubin as an antioxidant in a chronic intoxication with ALA. Female Wistar rats were injected intraperitoneally a daily dose of 40 mg ALA/body wt., during 10 days. A marked increase in lipid peroxidation and a decrease in GSH content were observed 24 h after the last injection of ALA. The activities of liver antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase were also diminished. ALA synthase (ALA-S) and heme oxygenase-1 were induced. Both ALA dehydratase (ALA-D) and porphobilinogenase (PBG-ase) activities were inhibited. Administration of bilirubin (5 mmol/kg body wt.) 2 h before ALA treatment entirely prevented the effects of ALA. Co-administration of ALA and Sn-protoporphyrin IX (Sn-PPIX; 100 microg/body wt., i.p.), a potent inhibitor of heme oxygenase, completely abolished its induction and provoked a marked decrease in liver GSH levels as well as an increase in lipid peroxidation. These results add further support to the proposal assigning bilirubin a key protective role against oxidative damage here induced by ALA.  相似文献   

6.
Results from the Russian Cosmos program suggest that the rhesusmonkey is an excellent model for studying weightlessness-induced changes in muscle function. Consequently, the purpose of this investigation was to establish the resting levels of selected substrateand enzymes in individual slow- and fast-twitch muscle fibers of therhesus monkey. A second objective was to determine the effect of an18-day sit in the Spacelab experiment-support primate facility[Experimental System for the Orbiting Primate (ESOP)].Muscle biopsies of the soleus and medial gastrocnemius muscles wereobtained 1 mo before and immediately after an 18-day ESOP sit. Thebiopsies were freeze-dried, and individual fibers were isolated andassayed for the substrates glycogen and lactate and for the high-energyphosphates ATP and phosphocreatine. Fiber enzyme activity was alsodetermined for the glycolytic enzymes phosphofructokinase and lactatedehydrogenase (LDH) and for the oxidative markers 3-hydroxyacyl-CoAdehydrogenase (-OAC) and citrate synthase. Consistent with otherspecies, the fast type II fibers contained higher glycogen content thandid the slow type I fibers. The ESOP sit had no significant effects onthe metabolic profile of the slow fibers of either muscle or the fast fibers of the soleus. However, the fast gastrocnemius fibers showed asignificant decline in phosphocreatine and an increase in lactate. Also, similar to other species, the fast fibers contained significantly higher LDH activities and lower 3-hydroxyacyl-CoA dehydrogenase activities. For the muscle enzymes, the quantitatively most important effect of the ESOP sit occurred with LDH where activities increased inall fiber types postsit except the slow type I fiber of the medial gastrocnemius.

  相似文献   

7.
Loss of myostatin (mstn) function leads to a decrease in mitochondrial content, a reduced expression of cytochrome c oxidase, and a lower citrate synthase activity in skeletal muscle. These data suggest functional or ultrastructural mitochondrial abnormalities that can impact on muscle endurance characteristics in such phenotype. To address this issue, we investigated subsarcolemmal and intermyofibrillar (IMF) mitochondrial activities, skeletal muscle redox homeostasis, and muscle fiber endurance quality in mstn-deficient mice [mstn knockout (KO)]. We report that lack of mstn induced a decrease in the coupling of IMF mitochondria respiration, with significantly higher basal oxygen consumption. No lysis of mitochondrial cristae or excessive swelling were observed in mstn KO mice compared with wild-type (WT) mice. Concerning redox status, mstn KO gastrocnemius exhibited a significant decrease in lipid peroxidation levels (-56%; P < 0.01 vs. WT) together with a significant upregulation of the antioxidant glutathione system. In contrast, superoxide dismutase and catalase activities were altered in mstn KO, gastrocnemius and soleus with a reduction of up to 80% compared with WT animals. The force production observed after contractile endurance test was significantly lower in extensor digitorum longus and soleus muscles of mstn KO mice compared with the controls (17 ± 3 and 36 ± 5% vs. 28 ± 4 and 56 ± 5%, respectively, P < 0.05). Together, these findings indicate that, besides an increased skeletal muscle mass, genetic mstn inhibition has differential effects on redox homeostasis and mitochondrial function that would have functional consequences on muscle response to endurance exercise.  相似文献   

8.
In order to challenge in vivo muscle Ca2+ homeostasis and analyze consequences on mitochondrial H2O2 release (MHR) and sarcopenia, we injected Ca2+ ionophore A23187 (200 microg/kg, ip) in adult and old rats and measured gastrocnemius mass and mitochondrial Ca2+ content (MCC) using radioactive Ca2+ 48 h after injection. In a second experiment performed in old rats, we measured isocitrate dehydrogenase (ICDH) activity as an index of MCC, MHR, mitochondrial respiration, citrate synthase, COX and antioxydant enzyme activities 24 h after a 150 microg/kg injection. In adult rats, muscle mass and MCC were unchanged by A23187. In old rats, MCC increased 24 h after injection as reflected by a significant increase in ICDH activity; measured MCC tended to increase at 48 h. MHR and Mn-SOD activity were significantly increased at 24 h, and GPX activity was reduced. Muscle mass was unchanged but was negatively correlated with MCC in control and treated old rats. In conclusion, in old rats, A23187 probably induced a mitochondrial Ca2+ overload responsible for the observed increase in MHR without leading to muscle atrophy on a short term basis.  相似文献   

9.
The effects were examined of 6-month intermittent hypobaric (4000 m) exposure on the antioxidant enzyme systems in soleus and tibialis muscles of rats. At the end of the 6-month experimental exposure, the six rats in both the exposed group and the control group were sacrificed. Immunoreactive mitochondrial superoxide dismutase (Mn-SOD) contents were measured as well as the activities of antioxidant enzymes [Mn-SOD, cytosolic SOD (Cu,Zn-SOD), catalase (CAT), and glutathione peroxidase (GPX)]. Thiobarbituric acid-reactive substances (TBARS) were also determined as an indicator of lipid peroxidation. The high altitude exposure resulted in a marked increase in TBARS content in soleus muscle, suggesting increased levels of oxygen free radicals. Conversely, significant decreases in both Mn-SOD content and activity in solens muscle were oted affer exposure. Such trends were not noticed in tibialis muscle. On the other hand, no significant changes in Cu,Zn-SOD, CAT, or GPX were observed in either muscle. These results suggested that the increases in lipid peroxidation were most probably a result of decreased Mn-SOD function which was more depressed in oxidative than in glycolytic muscle.  相似文献   

10.
The effects of added load (20% of body mass) on the selected enzyme activities of red and white quadriceps femoris (QF), soleus, and gastrocnemius muscles of rats were studied. The rats were divided into sedentary control (SC), sedentary control with added load (SC+AL), endurance training (ET), and endurance training with added load (ET+AL) groups (n = 10 rats/group). After 6 wk, the SC+AL group had 57% higher (P less than 0.001) beta-glucuronidase (beta-GU) activity and 24% lower (P less than 0.05) citrate synthase activity in white QF than SC. Citrate synthase activity was also decreased in red QF (P less than 0.05) after the added load was used during nontraining hours. The training with added load induced similar but more pronounced changes than normal endurance training, especially in white QF. The ET+AL group demonstrated higher citrate synthase activity in white QF (P less than 0.001) and gastrocnemius (P less than 0.01) and higher malate dehydrogenase activity (P less than 0.05) and beta-GU activity (P less than 0.001) in white QF than the ET group. ET+AL rats also had higher phosphofructokinase (P less than 0.01) and lower creatine kinase (P less than 0.001) activity in white QF than ET rats. In conclusion, the added load without training had minor adaptive influences on muscles. The added load during training hours seemed to be an effective means of influencing the activation and adaptation in muscles that contain fast glycolytic fibers.  相似文献   

11.
Although the soleus muscle comprises only 6% of the ankle plantar flexor mass in the rat, a major role in stance and walking has been ascribed to it. The purpose of this study was to determine if removal of the soleus muscle would result in adaptations in the remaining gastrocnemius and plantaris muscles due to the new demands for force production imposed on them during stance or walking. A second purpose was to determine whether the mass or the fiber type of the muscle(s) removed was a more important determinant of compensatory adaptations. Male Sprague-Dawley rats underwent bilateral removal of soleus muscle, plantaris muscle, or both muscles. For comparison, compensatory hypertrophy was induced in soleus and plantaris muscles by gastrocnemius muscle ablation. After forty days, synergist muscles remaining intact were removed. Mass, and oxidative, glycolytic, and contractile enzyme activities were determined. Despite its role in stance and slow walking, removal of the soleus muscle did not elicit a measurable alteration in muscle mass, or in citrate synthase, lactate dehydrogenase, or myofibrillar ATPase activity in gastrocnemius or plantaris muscles. Similarly, removal of the plantaris muscle, or soleus and plantaris muscles, had no effect on the gastrocnemius muscle, suggesting that this muscle was able to easily meet the new demands placed on it. These results suggest that amount of muscle mass removed, rather than fiber type, is the most important stimulus for compensatory hypertrophy. They also suggest that slow-twitch motor units in the gastrocnemius muscle play an important role during stance and locomotion in the intact animal.  相似文献   

12.
Recent research suggests that LKB1 is the major AMP-activated protein kinase kinase (AMPKK). Peroxisome-proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) is a master coordinator of mitochondrial biogenesis. Previously we reported that skeletal muscle LKB1 protein increases with endurance training. The purpose of this study was to determine whether training-induced increases in skeletal muscle LKB1 and PGC-1alpha protein exhibit a time course and intensity-dependent response similar to that of citrate synthase. Male Sprague-Dawley rats completed endurance- and interval-training protocols. For endurance training, rats trained for 4, 11, 25, or 53 days. Interval-training rats trained identically to endurance-trained rats, except that after 25 days interval training was combined with endurance training. Time course data were collected from endurance-trained red quadriceps (RQ) after each time point. Interval training data were collected from soleus, RQ, and white quadriceps (WQ) muscle after 53 days only. Mouse protein 25 (MO25) and PGC-1alpha protein increased significantly after 4 days. Increased citrate synthase activity, increased LKB1 protein, and decreased AMPKK activity were found after 11 days. Maximal increases occurred after 4 days for hexokinase II, 25 days for MO25, and 53 days for citrate synthase, LKB1, and PGC-1alpha. In WQ, but not RQ or soleus, interval training had an additive effect to endurance training and induced significant increases in all proteins measured. These results demonstrate that LKB1 and PGC-1alpha protein abundances increase with endurance and interval training similarly to citrate synthase. The increase in LKB1 and PGC-1alpha with endurance and interval training may function to maintain the training-induced increases in mitochondrial mass.  相似文献   

13.

Aims

We hypothesized that oral l-glutamine supplementations could attenuate muscle damage and oxidative stress, mediated by glutathione (GSH) in high-intensity aerobic exercise by increasing the 70-kDa heat shock proteins (HSP70) and heat shock factor 1 (HSF1).

Main methods

Adult male Wistar rats were 8-week trained (60-min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were supplemented with either l-alanyl-l-glutamine dipeptide (1.5 g/kg, DIP) or a solution containing the amino acids l-glutamine (1 g/kg) and l-alanine (0.67 g/kg) in their free form (GLN + ALA) or water (controls).

Key findings

Plasma from both DIP- and GLN + ALA-treated animals showed higher l-glutamine concentrations and reduced ammonium, malondialdehyde, myoglobin and creatine kinase activity. In the soleus and gastrocnemius muscle of both supplemented groups, l-glutamine and GSH contents were increased and GSH disulfide (GSSG) to GSH ratio was attenuated (p < 0.001). In the soleus muscle, cytosolic and nuclear HSP70 and HSF1 were increased by DIP supplementation. GLN + ALA group exhibited higher HSP70 (only in the nucleus) and HSF1 (cytosol and nucleus). In the gastrocnemius muscle, both supplementations were able to increase cytosolic HSP70 and cytosolic and nuclear HSF1.

Significance

In trained rats, oral supplementation with DIP or GLN + ALA solution increased the expression of muscle HSP70, favored muscle l-glutamine/GSH status and improved redox defenses, which attenuate markers of muscle damage, thus improving the beneficial effects of high-intensity exercise training.  相似文献   

14.
Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 +/- 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9-12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 +/- 9.1 to 15.1 +/- 8.1% (P less than 0.001), whereas the percentage of type IIa fibers increased from 22.1 +/- 7.7 to 29.6 +/- 9.1% (P less than 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P less than 0.001) and type IIa fibers (10%; P less than 0.05). Capillary density increased from 257 +/- 43 capillaries/mm2 before training to 310 +/- 48 capillaries/mm2 after training (P less than 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P less than 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase increased by 24-55% in response to training (P less than 0.001-0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The amount of radical scavenging activity in muscle is unknown. The present study examines whether electron spin resonance (ESR) could measure and distinguish antioxidant capacity in muscle with different contractile and metabolic characteristics. Specimens of the soleus, plantaris, gastrocnemius (deep/surface portions), heart and diaphragm were obtained from female Wistar rats (n=7; 12 weeks old). Scavenging activity against superoxide anions in these specimens were determined by ESR using a spin-trapping chemical (5,5-dimethyl-1-pyrroline-N-oxide). The ESR signal intensity of reaction mixtures containing muscle tissues was significantly lower in the heart, soleus, diaphragm and deep portion of the gastrocnemius than in the plataris and surface portion of the gastrocnemius. Thus, the amount of scavenging activity converted into superoxide dismutase activity was the highest in the heart, and higher in the soleus, diaphragm and deep portion of the gastrocnemius than in other muscles (ANOVA, P<0.01). In addition, scavenging activity significantly correlated with citrate synthase activity (r=0.72, P<0.01, n=42) and myoglobin content (r=0.63, P<0.01, n=42). These findings suggested that ESR and spin-trapping can be detect differences in free radical scavenging activity among muscle tissues with different metabolic characteristics.  相似文献   

16.
17.
Skeletal muscle adaptations to microgravity exposure in the mouse.   总被引:4,自引:0,他引:4  
To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.  相似文献   

18.
Alpha-lipoic acid (ALA) is widely used as an antioxidant for the treatment of diabetes and its complications; however, the pro-oxidant potential of ALA has recently been reported. This study was designed to investigate whether ALA supplementation could have pro-oxidant effects on cardiac tissues in normal and diabetic rats. Diabetes was induced by a single dose of streptozotocin (STZ; 55 mg/kg (intraperitoneal). Diabetic and normal rats were treated with ALA (100 mg kg?1 day?1) for 45 days. ALA supplementation resulted in oxidative protein damage as evident by significant reduction in the cardiac levels of protein thiol in ALA-treated normal rats (P?<?0.01) together with a significant elevation (P?<?0.001) in the plasma levels of advanced oxidation protein products in ALA-treated normal rats and in ALA?+?STZ-diabetic rats compared with the normal control rats. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase has emerged as the major source of superoxide anion and enhanced oxidative damage in heart failure. ALA supplementation increased the myocardial immunoreactivity of p47phox subunit of NADPH oxidase in both normal nondiabetic and diabetic rats reflecting its pro-oxidant effect. Data showed that ALA supplementation failed to prevent cardiac complications in diabetic rats and led to cardiac toxicity in normal rats as indicated by pathological changes (cellular infiltration, fibrosis, and degeneration) and by the elevation of serum cardiac biomarkers compared with normal controls. The pro-oxidant effects of ALA suggest that careful selection of appropriate doses of ALA in reactive oxygen species-related diseases are critical.  相似文献   

19.
AMP-activated protein kinase (AMPK), which was activated by an antihyperglycemic drug metformin, has been hypothesized to mediate metabolic adaptations. The purposes of the present study were 1) to confirm whether acute metformin administration induced AMPK phosphorylation and 2) to determine whether chronic metformin treatment increased the peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein expression, glycolytic and oxidative enzyme activities, and cytochrome c and glucose transporter-4 (GLUT4) protein expressions in the rat soleus and red and white gastrocnemius muscles. The single oral administration of metformin (300 mg/kg body wt) enhanced the AMPK phosphorylation at 5 and/or 6 h after treatment. In the chronic study, rats were fed either normal chow or chow containing 1% metformin for 14 days. Metformin treatment resulted in a mean daily metformin intake of 631 mg.kg body wt(-1).day(-1). Metformin increased the PGC-1alpha content in all three muscles. Metformin increased the hexokinase activity in the white gastrocnemius, the citrate synthase activity in all three muscles, and the beta-hydroxyacyl-CoA dehydrogenase activity in the soleus. The cytochrome c protein content in the soleus muscle also increased. The GLUT4 content was unchanged by metformin. These results suggest that metformin enhances the PGC-1alpha expression and mitochondrial biogenesis possibly at least in part via AMPK phosphorylation in the skeletal muscle. Metformin has thus been proposed to possibly ameliorate insulin resistance, at least partially, by means of such metabolic effects.  相似文献   

20.
5-Aminolevulinic acid (ALA) is a heme precursor that accumulates in acute intermittent porphyria (AIP) due to enzymatic deficiencies in the heme biosynthetic pathway Its accumulation has been associated with several symptoms, such as abdominal pain attacks, neuromuscular weaknesses, neuropsychiatric alterations and increased hepatocellular carcinoma (HCC) incidence. The use of exogenous ALA to elevate porphyrin levels in tumor photodynamic therapy, adds further significance to ALA toxicology. Under ferritin mediated and metal catalyzed oxidation, ALA produces reactive oxygen species that can damage plasmid and isolated DNA in vitro, and increases the steady-state level of 8-oxo-7,8-dihydro-2'-deoxyguanosine in liver, spleen and kidney DNA and 5-hydroxy-2'-deoxycytidine in liver DNA of ALA-treated rats. The in vitro DNA damage could be partially inhibited by SOD, catalase, DTPA, mannitol and melatonin. ALA also promotes the formation of radical-induced base degradation products in isolated DNA. 4,5-Dioxovaleric acid, the final oxidation product of ALA, alkylates guanine moieties within both nucleoside and isolated DNA, producing two diastereoisomeric adducts. Dihydropyrazine derivatives of ALA generated by its dimerization, promote DNA strand-breaks and 8-oxodGuo formation in the presence of Cu2+. Together these results reinforce the hypothesis that the DNA damage induced by ALA may be associated with the development of HCC in individuals suffering from AIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号