首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosynthesis of ubiquinone-9 was studied by incubating rat liver mitochondria with p-hydroxy[U-14C]benzoate, solanesyl diphosphate and S-adenosyl-L-methionine. When methylation reactions were inhibited by replacing S-adenosyl-L-methionine with S-adenosyl-L-homocysteine, nonaprenyl p-hydroxybenzoate and three other labeled peaks, designated as P1, P2 and P3 according to their retention times on HPLC, were observed. No carboxyl group was present in P1, P2 or P3 because the radioactivities disappeared when p-hydroxy[U-14C]benzoate was replaced by p-hydroxy[carboxyl-14C]benzoate. Compound P2 seemed to be hydroxylated but not methylated because its radioactivity markedly diminished under anaerobic conditions and the radioactivity was not incorporated into the compound from S-adenosyl-L-[methyl-3H]methionine, suggesting that P2 is 6-hydroxynonaprenylphenol. The complete correspondence of the retention times of P2 and chemically synthesized 6-hydroxynonaprenylphenol on HPLC further confirmed this possibility. P2 was a precursor of ubiquinone-9 because the radioactivity of the compound was incorporated into ubiquinone when incubated with mitochondria. The results suggest that the decarboxylation may occur prior to the first methylation in the ubiquinone biosynthesis in rat liver mitochondria, though it has been generally considered that in eukaryotes the first methylation precedes the decarboxylation.  相似文献   

2.
The synthesis and phospholipid content in the liver, intestine and spleen in normal and irradiated rats administered ubiquinone-9 were studied with the use of 3H-serine. Ubiquinone markedly activated decarboxylation of phosphatidylserine and suppressed transformation of phosphatidylethanolamine to phosphatidylcholine in rat liver and spleen. The effect was also observed in the organs of irradiated animals. In rat intestine, administration of ubiquinone normalized a sharp gamma-irradiation-induced inhibition of transformation of phosphatidylcholine from phosphatidylethanolamine. The catabolism of phospholipids under the action of ubiquinone and radiation was inhibited in the liver and, on the contrary, was activated in radiosensitive organs.  相似文献   

3.
The distribution and redox state of ubiquinone in rat and human tissues have been investigated. A rapid extraction procedure and direct injection onto HPLC were employed. It was found in model experiments that in postmortem tissue neither oxidation nor reduction of ubiquinone occurs. In rat the highest concentrations of ubiquinone-9 were found in the heart, kidney, and liver (130-200 micrograms/g). In brain, spleen, and intestine one-third and in other tissues 10-20% of the total ubiquinone contained 10 isoprene units. In human tissues ubiquinone-10 was also present at highest concentrations in heart, kidney, and liver (60-110 micrograms/g), and in all tissues 2-5% of the total ubiquinone contained 9 isoprene units. High levels of reduction, 70-100%, could be observed in human tissues, with the exception of brain and lung. The extent of reduction displayed a similar pattern in rat, but was generally lower.  相似文献   

4.
Adaptation to continuous hypoxia under mid-mountain conditions (altitude 2100 m) decreases the content of lipid peroxidation products and the activity of superoxide dismutase and catalase in rat heart, liver, and brain, with a concomitant decline in the resistance to reperfusion arrhythmias. On the contrary, adaptation to intermittent hypoxia in the altitude chamber increases the activity of the antioxidant enzymes in the same organs, while the content of peroxidation products remains normal; at the same time, the heart becomes more resistant to reperfusion arrhythmias. The mechanism is discussed that ensures enhanced antioxidant protection in adaptation to intermittent hypoxia.  相似文献   

5.
Protective and therapeutic effect of ubiquinone-8 was demonstrated on rats exposed to 8 Gy radiation. There was a 16-20% increase in the survival rate of the irradiated rats as compared with the controls. The per os administration of ubiquinone-8 during a five-month period in conditions of chronic exposure arrested the radiation-induced accumulation of lipids in rat liver and somewhat improved the dynamics of the body mass growth in the exposed rats.  相似文献   

6.
The properties and distribution of nonaprenyl-4-hydroxybenzoate transferase in rat liver were investigated with subcellular fractions, liver perfusion, and in vivo labeling with [3H]solanesyl-PP. In addition to some ubiquinone-9, only one labeled intermediate, i.e. nonaprenyl-4-hydroxybenzoate, was obtained. In the total microsomal fraction, the enzyme had a pH optimum of 7.5 and was completely inhibited by Triton X-100 and deoxycholate, but not by taurodeoxycholate and beta-octyl glucoside. Liver, kidney, and spleen demonstrated the highest activities of nonaprenyl-4-hydroxybenzoate transferase. Upon subcellular fractionation, high specific activities were found in smooth II microsomes and Golgi III vesicles. The enzyme was also found in lysosomes and plasma membranes, but only at low levels in rough and smooth I microsomes and mitochondria and not at all in peroxisomes and cytosol. When the product of the transferase reaction was used as a substrate in vitro and in a perfusion system, the only product obtained was end product ubiquinone-9. Although the transferase reaction was associated with the inner, luminal surface of microsomal vesicles, the terminal reaction(s) for ubiquinone-9 synthesis are found at the outer cytoplasmic surface. The results suggest that the major site for ubiquinone synthesis is the endoplasmic reticulum-Golgi system, which also participates in the distribution of ubiquinone-9 to other cellular membranes.  相似文献   

7.
A Thelin  S Schedin  G Dallner 《FEBS letters》1992,313(2):118-120
The half-life of ubiquinone-9 in various rat tissues was determined. Rats were injected intraperitoneally with [3H]mevalonate and the decay of radioactivity incorporated into ubiquinone-9 was followed using reverse-phase HPLC. The half-life varied between 49 h (testis) and 125 h (kidney).  相似文献   

8.
Abstract: To investigate the perturbation of ubiquinone biosynthesis by a hypocholesterolemic drug, 3β-(2-di-ethylaminoethoxy)androst-5-en-17-one hydrochloride (U18666A), we measured the incorporation of radioactive mevalonate, methionine, tyrosine, and 4-hydroxybenzoic acid into ubiquinone in glioblastoma cells. These four precursors unanimously showed that ubiquinone biosynthesis was not significantly altered by U18666A, which blocked cholesterol biosynthesis at steps beyond mevalonate formation. The fluctuation of the endogenous mevalonate level had little effect on ubiquinone biosynthesis, implying the relative stability of cellular ubiquinone biosynthesis. Furthermore, exogenously added mevalonate did not have an appreciable effect on ubiquinone biosynthesis. The major ubiquinone produced in rat glioblastoma cells was identified as ubiquinone-9. The mevalonate-derived products accumulated in the U18666A-treated cells differed significantly from those reported in a broken cell study, suggesting the existence of delicate mechanisms regulating the formation of cholesterol intermediates.  相似文献   

9.
Crystals of ubiquinone-10 were isolated from soyabean, peanut and Ruta cell cultures, while crystals of ubiquinone-9 were obtained from rice and wheat cell cultures. These crystals also contained lesser amounts of lower and higher homologues (ubiquinone-7 to 10). The ubiquinone content of eight higher plants in cell culture was determined. Ubiquinone-9 content of rice was 680 μg per g dry wt, and this was 3–6 times higher than that of the other plants.  相似文献   

10.
The influence of continuous gamma irradiation on the lipids of nuclei and chromatin of rat liver at a dose-rate of 0,129 Gy/day for 155 days (a total dose of 20 Gy) and by feeding of ubiquinone-9 has been studied. The amount of phosphatidylcholine with phosphatidylserine and phosphatidyl-ethanolamine in liver nuclei of irradiated rats was found to increase. Ubiquinone-9 had a normalizing effect. A decrease of cardiolipin was observed in the liver chromatin of irradiated rats. The amount of free fatty acids had a tendency to decrease in homogenate, nuclei and liver chromatin of irradiated rats. Ubiquinone was found to increase the amount of free fatty acids up to the control level. The amount of cholesterol in nuclei was increased after irradiation and that in chromatin tended to rise. Ubiquinone-9 significantly decreased the amount of cholesterol in nuclei and chromatin of irradiated rats.  相似文献   

11.
It was shown that gamma-radiation (8-16 Gy) did not influence the number of paramagnetic centers of hemal (g = 2.42, g = 2.25) and nonhemal (g = 1.94) iron of rat tissues: free radicals were significantly reduced 5 min after 16 Gy irradiation. The combined effect of gamma-radiation (8 Gy) and ubiquinone-9 decreased the number of the above-mentioned ESR signals after 48 h. The number of free radicals in the rat liver, kidneys and spleen was almost twice reduced 28 days following castration. The administration of methyl testosterone increased the free radical amount in the heart and was ineffective in other rat organs.  相似文献   

12.
The regulation of ubiquinone-6 biosynthesis by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Increasing concentrations of glucose (1-5%) in the growth medium depressed ubiquinone-6 biosynthesis in continuously cultured wild type Saccharomyces cerevisiae. In addition, an early intermediate in the pathway of ubiquinone-6 biosynthesis, i.e. 3,4-dihydroxy-5-hexaprenylbenzoate (3,4-DHHB), was found to accumulate. The increase in 3,4-DHHB levels varied inversely with the diminished levels of ubiquinone-6, suggesting that O-methylation of 3,4-DHHB is a regulated step in catabolite repression. Experiments using protoplasts demonstrated that the effect of catabolite repression on this pathway was reversible by 1.2 mM cAMP but not by other nucleotides and cyclic nucleotides. This response to cAMP was unaltered by the protein synthesis inhibitor cycloheximide, indicating that the regulatory control for this reaction must occur at the enzymatic level. Additional experiments demonstrated the presence of a heat-labile component of the cytoplasm, which was essential for this effect of cAMP. This observation suggests that this cytosolic effector may be translocated to the inner membrane of the mitochondria, the intracellular site for ubiquinone-6 biosynthesis.  相似文献   

13.
We investigated the application of 1-alkylamines, as additives to the mobile phase, to a quantification method for ubiquinone-9 (CoQ9) and ubiquinone-10 (CoQ10) in rat thigh muscle and heart using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the optimization of the analytical method, we found that 1-alkylamines mixed with CoQ9 and CoQ10 in the turbo ion sprayed solution formed the 1-alkylammonium adduct molecules of these compounds during the ionization process and that the intensity of the adduct ions was considerably higher than that of the protonated molecules ([M+H]+) of these compounds. Furthermore, we investigated a variety of 1-alkylamines in the mobile phase for LC-MS/MS analysis to select the most appropriate 1-alkylamine for higher sensitivities of CoQ9 and CoQ10. After these examinations, we found that methylamine was the most suitable additive for the mobile phase, allowing a 12.5-fold gain in signal intensity in the full ion mass spectrum compared with that without methylamine. The internal standard (IS) used was ubiquinone-11 (CoQ11) for each analyte. The analytes and IS were extracted with methanol from the tissue homogenates at neutral pH and were injected into an LC-MS/MS with a turbo ion spray interface. The calibration curves for CoQ9 (5-500 microg/g in thigh muscle and 50-10,000 microg/g in heart) and CoQ10 (1-500 microg/g in thigh muscle and 10-10,000 microg/g in heart) showed good linearity. The method was precise; the relative standard deviations of the method for rat thigh muscle were not more than 13.5 and 9.0% for CoQ9 and CoQ10, respectively, and those for rat heart were not more than 6.7 and 5.4% for CoQ9 and CoQ10, respectively. The accuracies of the method for both rat thigh muscle and heart were good, with the deviations between the nominal concentration and calculated concentration of CoQ9 and CoQ10 typically being within 12.3 and 4.3%, respectively. This method provided reliable concentration levels for CoQ9 and CoQ10 in rat thigh muscle and heart.  相似文献   

14.
Activities of rat liver delta-aminolevulinate synthetase (delta-ALAS), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH), GSH content in the liver, and the absorption spectrum of blood serum were investigated after CoCl2, HgCl2, or beta-adrenoblocker (propranolol) injection and after CoCl2 and propranolol co-administration. Inhibition of the activity of the key heme biosynthesis enzyme delta-ALAS was most pronounced and prolonged during the first hours after CoCl2 and CoCl2 plus propranolol injections; this was associated with accumulation of Co2+--protoporphyrin-containing products of hemolysis. Inhibition of delta-ALAS after propranolol injection is not mediated by hemolysis. A decrease in GSH content precedes the induction of heme biosynthesis only in the case of HgCl2 administration, and this was associated with inhibition of GR and G6PDH. The decreased GSH content during the first hours after injection of propranolol and co-administration of CoCl2 and propranolol was not followed by increase in delta-ALAS activity 24 h after the injection. The mechanisms of the increase in the free heme content in the liver during the early stages of oxidative stress and the regulation of the key heme biosynthesis enzyme are discussed.  相似文献   

15.
Chloroquine is a potent lysomotropic therapeutic agent used in the treatment of malaria. The mechanism of the chloroquine-mediated modulation of new cardiolipin biosynthesis in isolated rat liver hepatocytes and H9c2 cardiac myoblast cells was addressed in this study. Hepatocytes or H9c2 cells were incubated with [1,3-3H]glycerol in the absence or presence of chloroquine and cardiolipin biosynthesis was examined. The presence of chloroquine in the incubation medium of hepatocytes resulted in a rapid accumulation of radioactivity in cardiolipin indicating an elevated de novo biosynthesis. In contrast, chloroquine caused a reduction in radioactivity incorporated into cardiolipin in H9c2 cells. The presence of brefeldin A, colchicine or 3-methyladenine did not effect radioactivity incorporated into cardiolipin nor the chloroquine-mediated stimulation of cardiolipin biosynthesis in hepatocytes indicating that vesicular transport, cytoskeletal elements or increased autophagy were not involved in de novo cardiolipin biosynthesis induced by chloroquine. The addition of chloroquine to isolated rat liver membrane fractions did not affect the activity of the enzymes of de novo cardiolipin biosynthesis but resulted in an inhibition of mitochondrial cytidine-5-diphosphate-1,2-diacyl-sn-glycerol hydrolase activity. The mechanism for the reduction in cardiolipin biosynthesis in H9c2 cells was a chloroquine-mediated inhibition of glycerol uptake and this did not involve impairment of lysosomal function. The kinetics of the chloroquine-mediated inhibition of glycerol uptake indicated the presence of a glycerol transporter in H9c2 cells. The results of this study clearly indicate that chloroquine has markedly different effects on glycerol uptake and cardiolipin biosynthesis in hepatocytes and H9c2 cardiac cells  相似文献   

16.
17.
Abstract: Cultured neurons from rat dorsal root ganglia and cerebral cortex were infected with Sendai virus, which gives a productive replication with lysis of most neurons, and with the RW strain of mumps virus, which undergoes defective replication causing degeneration of only 30–40% of the neurons within 5 days after initial infection. In Sendai virus-infected cells the amount of polyisoprenoid lipids was enhanced. In mumps virus-infected cultures there were transient reductions in the contents of cholesterol, dolichol, and ubiquinone-9 in the cultures, whereas the reduction in the ubiquinone-10 level was progressive, reaching 20% of its original value 21 days after infection. Treatment of mumps virus-infected cultures with ubiquinone-10 protected the neurons from degeneration, whereas no effects were observed on exposure to ubiquinone-9. Linolenic acid (18:3) and arachidonic acid (20:4), but not myristic acid (14:0) and palmitic acid (16:0), also had significant neuroprotective effects.  相似文献   

18.
The addition of cyclohexane carboxylic acid (CCA) to the incubation medium results in a dilution of the radioactivity incorporated into ubiquinone-9 (UQ-9) from 1-14C-benzoate by rat liver slices. This effect is more pronounced when the slices are preincubated prior to addition of the labeled precursor. A similar dilution by CCA of label incorporation, is observed using U-14C-tyrosine, but not either CH3-14C-methionine or 2-14C-mevalonate, as precursors. UQ-9, but not cholesterol, isolated from liver slices incubated with ring-U-14C-CCA is found to be labeled. The extent of labeling of UQ-9 by this precursor is enhanced by the presence of an excess of mevalonate in the incubation medium and decreased by the addition of p-hydroxybenzoate. These results suggest that aromatisation of cyclohexane derivatives may serve as a possible source of the benzoquinone nucleus of UQ-9 in the rat.  相似文献   

19.
The biosynthesis of ubiquinone was studied in an isolated perfused beating heart preparation from adult male rats to determine rate-limiting steps in the biosynthetic pathway. The isolated heart could incorporate p-hydroxy[U-14C]benzoate into ubiquinones (ubiquinone-9 and -10) and two other lipids which were identified as 3-nonaprenyl 4-hydroxybenzoate and 3-decaprenyl 4-hydroxybenzoate. No other lipids could be detected. Addition of unlabeled mevalonolactone to the perfusate stimulated the rate of incorporation of p-hydroxy[U-14C]benzoate into 3-nonaprenyl 4-hydroxybenzoate and 3-decaprenyl 4-hydroxybenzoate. The level of radioactivity in these intermediates was much greater than that in ubiquinone-9 and -10. These results show that in the intact heart there is a large excess capacity to form postmevalonate isoprenoid precursors of ubiquinone and suggest a possible regulatory step at the premevalonate level. Moreover, the accumulation of prenylated derivatives of 4-hydroxybenzoic acid indicates further rate limitation at one or more of the subsequent steps in conversion of these intermediates to ubiquinone.  相似文献   

20.
慢性高原低氧对高原鼠兔和大鼠肝脏的作用   总被引:1,自引:1,他引:0  
我们曾经发现,移入高原的实验大鼠子一代和高原鼠兔(Ochotona curzoniae)对高原低气压低氧有完全不同的适应能力和适应机理(杜继曾等,1982)。我们还观察到,在24小时急性高原低氧时,由低地移入2300米高原的大鼠后裔在5000米和8000米的高度上,出现了以转氨酶、肝溶酶体酸性磷酸酶活力升高、肝糖原和蛋白质含量下降的肝脏代谢异常和肝脏病理变化,而高原鼠兔只是在8000米高度时,才始出现部分指标的轻度变异(杜继曾等,1982),从而揭示了高原鼠兔的肝细胞代谢在细胞水平上对低氧的适应机制优越于移入高原的实验大鼠后代。慢性低氧又如何作用于大鼠和高原鼠兔的肝脏代谢?迄今尚无人研究。因此对这一作用规律的认识和阐明,在环境适应生理学领域、人类高原活动和畜牧业生产上都是十分重要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号