首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nucleotide sequence of the 3' end of MCF 247 murine leukemia virus   总被引:32,自引:24,他引:8       下载免费PDF全文
We isolated DNA clones of MCF 247, a leukemogenic, recombinant type C virus obtained from the thymus of an AKR mouse. We determined the nucleotide sequence of the viral long terminal repeat (LTR) and the 3' end of env, and we compared the sequences to corresponding sequences of the genome of Akv virus, the putative ecotropic parent of MCF 247. By analogy with Moloney leukemia virus, we identified the amino terminus of Prp15E, the C-terminal proteolytic cleavage product of env and precursor to mature virion p15E. In MCF 247 the presumptive Prp15E is encoded by a 603-nucleotide open reading frame. The majority of this sequence is identical to that of Akv. However, a recombination event near the 3' end of the Prp15E-coding region introduces nonecotropic sequences into MCF 247, and these extend to the 3' end through the U3 portion of the LTR. The U3 regions of Akv and MCF 247 are about 83% homologous. The R and U5 regions of the LTR of MCF 247 and Akv are identical. Large RNase T1-resistant oligonucleotides analyzed previously in numerous ecotropic and MCF viral genomes were located within the Akv and MCF 247 DNA sequences. The resulting precise T1 oligonucleotide maps of the 3' ends of MCF viral genomes reveal that the biologically defined, leukemogenic class I MCFs isolated from thymic neoplasms of inbred mice all share the sequence pattern seen in MCF 247, a representative of this group; they possess recombinant Prp15E genes and derive U3 from their nonecotropic parents.  相似文献   

2.
The leukemogenic mink cell focus-forming (MCF) retroviruses such as MCF 247 have biological properties distinct from those of their ecotropic progenitors. Nucleotide sequences encoding portions of gp70, Prp15E, and the long terminal repeat differ between the two types of viruses. To investigate the role of each of these genetic elements in determining the biological properties of MCF viruses, we prepared infectious molecular clones of MCF 247 and generated a set of recombinants between these clones and a molecular clone of Akv, the ecotropic parent of MCF 247. Each molecular clone of MCF 247 was distinct. All the recombinants between Akv and MCF 247 yielded infectious virus upon transfection. Most interestingly, recombinants which contain the long terminal repeat of MCF 247 were found to have an in vitro host range property that has been correlated with high oncogenic activity and thymotropism of certain MCF isolates; namely, they plated with higher efficiency on SC-1 cells than on NFS mouse embryo cells. Nononcogenic MCF isolates showed a slight preference for NFS cells, whereas Akv virus plated with approximately equal efficiency on the two cell types.  相似文献   

3.
We used T1 oligonucleotide maps, in conjunction with available nucleotide sequences of appropriate C-type viruses, to identify regions of the viral genome that distinguish two biological classes of mink cell focus-forming (MCF) viruses described previously by Cloyd et al. (J. Exp. Med. 151:542-522, 1980). We found that leukemogenic MCF viruses from thymus differed from non-leukemogenic MCFs isolated from nonthymic neoplasms in nucleotide sequences encoding Prp15E and the U3 portion of the long terminal repeat (LTR). The thymic isolates possessed recombinant Prp15E genes, with the 5' to mid portion derived from their ecotropic parents and the extreme 3' portion invariably derived from their nonecotropic parents. These viruses probably derived the entire U3 portion of their LTRs from their nonecotropic parents. The nonthymic MCFs appeared to inherit their entire Prp15E coding region from their nonecotropic parents. We failed to detect consistent differences in gp70-coding sequences between the two groups of MCFs, but this may simply reflect limitations of the data. The studies presented here, in conjunction with studies from a number of labs indicating a role for MCF gp70 in leukemogenesis, indicate that three genetic elements, gp70, p15E, and the U3 portion of the LTR, may all play a role in determining the leukemogenic phenotype of type C viruses of high-leukemic inbred mice.  相似文献   

4.
SL3-3 is a potent leukemogenic retrovirus that closely resembles the non-leukemogenic virus Akv. Both viruses were isolated from AKR mice, have ecotropic host ranges, and form plaques in the XC assay. They differ at only 1 to 2% of the nucleotides in the viral genomes but differ markedly in virulence properties. SL3-3 induces leukemia in a high percentage of inoculated AKR, C3H, CBA, and NFS mice, whereas Akv does not induce disease in any of these strains. To determine which region of the genome accounts for the leukemogenic potential of SL3-3, we constructed recombinant genomes between molecular clones of SL3-3 and Akv. Recombinant, viral DNA genomes were cloned and then were transfected onto NIH 3T3 fibroblasts to generate infectious virus. The recombinant viruses were tested for leukemogenicity in AKR/J, CBA/J, and C3Hf/Bi mice. We localized the primary leukemogenic determinant to a 3.8-kilobase fragment of the SL3-3 genome containing the viral long terminal repeat, 5' untranslated sequences, gag gene, and 5', 30% of the pol gene. Reciprocal recombinants containing the equivalent region from Akv, linked to the env gene and the remainder of the pol gene from SL3-3, did not induce leukemia. We conclude that the primary virulence determinant of SL3-3 lies outside the region of the genome that encodes the envelope proteins gp70 and p15E.  相似文献   

5.
We analyzed viral recombination events that occur during the preleukemic period in AKR mice. We tagged a molecular chimera between the nonleukemogenic virus Akv and the leukemogenic mink cell focus-inducing (MCF) virus MCF 247 with an amber suppressor tRNA gene, supF. We injected the supF-tagged chimeric virus that contains all of the genes of MCF 247 except the envelope gene, which in turn is derived from Akv, into newborn AKR mice to evaluate its pathogenic potential. Approximately the same percentage of animals developed leukemia with similar latent periods when injected with either the tagged or nontagged virus. DNA from tumors induced in AKR mice by the tagged chimeric virus was analyzed by Southern blotting with the supF gene as a probe. One set of tumors contained the injected supF-tagged virus. Two kinds of supF-tagged proviruses were found in a second set of tumors. One group of supF-tagged viruses had a restriction map consistent with that of the injected virus, while the other group of proviruses had restriction maps that suggested that the proviruses had acquired an MCF virus-like envelope gene by recombination with endogenous viral sequences. These results demonstrate that injected viruses recombine in vivo with endogenous viral sequences. Furthermore, the progression to leukemia was accelerated in mice that develop tumors containing proviruses with an MCF virus env gene, emphasizing the importance of the role of the MCF virus env gene product in transformation.  相似文献   

6.
Oncogenic mink cell focus-forming (MCF) viruses, such as MCF 247, show a positive correlation between the ability to replicate efficiently in the thymus and a leukemogenic phenotype. Other MCF viruses, such as MCF 30-2, replicate to high titers in thymocytes and do not accelerate the onset of leukemia. We used these two MCF viruses with different biological phenotypes to distinguish the effect of specific viral genes and genetic determinants on thymotropism and leukemogenicity. Our goal was to identify the viral sequences that distinguish thymotropic, nonleukemogenic viruses such as MCF 30-2 from thymotropic, leukemogenic viruses such as MCF 247. We cloned MCF 30-2, compared the genetic hallmarks of MCF 30-2 with those of MCF 247, constructed a series of recombinants, and tested the ability of recombinant viruses to replicate in the thymus and to induce leukemia. The results established that (i) MCF 30-2 and MCF 247 differ in the numbers of copies of the enhancer sequences in the long terminal repeats. (ii) The thymotropic phenotype of both viruses is independent of the number of copies of the enhancer sequences. (iii) The oncogenic phenotype of MCF 247 is correlated with the presence in the virus of duplicated enhancer sequences or with the presence of an enhancer with a specific sequence. These results show that the pathogenic phenotypes of MCF viruses are dissociable from the thymotropic phenotype and depend, at least in part, upon the enhancer sequences. On the basis of these results, we suggest that the molecular mechanisms by which the enhancer sequences determine thymotropism are different from those that determine oncogenicity.  相似文献   

7.
The Gross passage A murine leukemia virus (MuLV) is a highly leukemogenic, ecotropic fibrotropic retrovirus. Its genome is similar to that of other nonleukemogenic ecotropic fibrotropic MuLVs but differs at the 3' end and in the long terminal repeat. To determine whether these modifications were related to its leukemogenic potential, we constructed a viral DNA recombinant in vitro with cloned infectious DNA from this highly leukemogenic Gross passage A MuLV and from a weakly leukemogenic endogenous BALB/c B-tropic MuLV. Infectious viruses, recovered after microinjection of murine cells with recombinant DNA, were injected into newborn mice. We show here that the Gross passage A 1.35-kilobase-pair KpnI fragment (harboring part of gp70, all of p15E, and the long terminal repeat) is sufficient to confer a high leukemogenic potential to this recombinant.  相似文献   

8.
Nucleotide sequence of the gp70 gene of murine retrovirus MCF 247.   总被引:23,自引:19,他引:4       下载免费PDF全文
We determined the nucleotide sequence and predicted the amino acid sequence of the gp70 gene of MCF 247, a recombinant murine retrovirus isolated from an AKR mouse. Information specifying the first 286 amino acids of the protein was probably derived from the presumptive nonecotropic parent of MCF 247, whereas the C-terminal 154 amino acids were probably derived from the ecotropic parent Akv. The nonecotropic sequences at the amino terminus of MCF 247 show only 38% homology, at the amino acid level, to those of Akv. In contrast, these sequences are strikingly similar (99% homologous) to those reported for another MCF virus. Moloney MCF, which was isolated from a BALB/c mouse. Moloney MCF also has ecotropic-derived sequences encoding the C-terminal portion of its gp70 protein; however, the recombination event that introduced these sequences occurs 213 nucleotides further towards the C terminus of gp70 than it does in MCF 247.  相似文献   

9.
We used AKR/J mice to produce monoclonal antibodies specific for a neurotropic ecotropic (WM-E) virus initially isolated from wild mice. The rationale for this approach involved the observation that these mice were immunologically hyporesponsive to endogenous ecotropic virus (Akv) but fully responsive to type-specific determinants of WM-E. Hybridoma cell lines derived from mice immunized with both denatured and viable virus produced antibodies with specificity for three viral membrane-associated polypeptides, gp70, p15(E), and p15gag. Epitopes specific for WM-E virus were detected in each of these polypeptides. Cross-reactivity with Friend ecotropic virus (Friend murine leukemia virus) was observed with some gp70- and p15gag-specific antibodies, but no reactivity with endogenous Akv ecotropic virus was seen. The majority of these antibodies did not react with either xenotropic or mink cell focus-forming viruses. Two WM-E-specific anti-gp70 antibodies reacting with different determinants had virus-neutralizing activity in the absence of complement, suggesting that the respective epitopes may participate in receptor binding or virus penetration events. We used these monoclonal antibodies in initial studies to examine the replication of WM-E virus in neonatally inoculated AKR/J mice which are fully resistant to the paralytic disease induced by this virus. Since these mice express high levels of endogenous ecotropic virus, standard assays for ecotropic virus cannot be used to study this question. We present evidence that the resistance to disease does not involve a resistance to virus replication, since these mice expressed levels of viremia and virus replication in spleen and lumbar spinal cord comparable to susceptible NFS/N mice at a time when the latter began to manifest clinical signs of lower-motor-neuron pathology.  相似文献   

10.
T1-oligonucleotide fingerprinting and mapping were used to study the expression of RNA leukemia viruses in leukemic and preleukemic AKR/J mice, with techniques designed to minimize the loss or inadvertent selection of viruses in vitro before biochemical analysis. In leukemic animals, complex mixtures of ecotropic and mink-tropic viruses were expressed. Unique but similar polytropic virus-like genomes were present in each tumor isolate. In preleukemic mice, viral isolates from the thymus that were grown on NIH3T3 fibroblasts contained genomes with non-Akv polytropic virus-related oligonucleotides. This phenomenon was not evident in fingerprints of viruses from the spleen and bone marrow of the same animals. Remarkably, the non-Akv oligonucleotides located in the 3' portion of the P15E gene, the U3 noncoding region, and the 5' part of the gp70 gene were often expressed independently. Our results suggest the following. (i) Recombinant viruses can be detected in the thymuses of young preleukemic AKR mice and increase in relative abundance with age. (ii) During in vivo generation of the recombinant leukemogenic viruses, the selection of polytropic virus-related sequences in the 3' part of p15E and the U3 region and the 5' portion of gp70 occurs independently. (iii) Independent biological properties encoded in the gp70 and p15E regions of env of the recombinant viruses may mediate viral selection or leukemogenicity. (iv) The leukemogenic polytropic viruses of AKR/J mice arise via genetic recombination involving at least three endogenous viral sequences.  相似文献   

11.
12.
Structures of somatically acquired murine leukemia virus (MuLV) genomes present in the DNA of a large panel of MuLV-induced C57BL and BALB/c B and non-T/non-B cell lymphomas were compared with those present in MuLV-induced T-cell lymphomas induced in the same low-"spontaneous"-lymphoma-incidence mice. Analyses were performed with probes specific for the gp70, p15E, and U3-long terminal repeat (LTR) regions of ecotropic AKV MuLV and a mink cell focus-forming virus (MCF)-LTR probe annealing with U3-LTR sequences of a unique endogenous xenotropic MuLV, which also hybridizes with U3-LTR sequences of a substantial portion of somatically acquired MCF genomes in spontaneous AKR thymomas. The DNAs of both T- and B-cell tumors induced by neonatal inoculation with the highly oncogenic C57BL-derived MCF 1233 virus predominantly contain integrated MCF proviruses. In contrast, the DNAs of more slowly developing B and non-T/non-B cell lymphomas induced by poorly oncogenic ecotropic or MCF C57BL MuLV isolates mostly contain somatically acquired ecotropic MuLV genomes. Approximately 50% of the spontaneous C57BL lymphoma DNAs contain somatically acquired MuLV genomes. None of the integrated MuLV proviruses annealed with the MCF-LTR probe, which indicates a clear difference in LTR structure with a substantial portion of the somatically acquired MuLV genomes present in the DNA of spontaneous AKR thymomas. This study stresses a dominant role of MuLV with ecotropic gp70 and LTR sequences in the development of slowly arising MuLV-induced B and non-T/non-B cell lymphomas.  相似文献   

13.
The development of spontaneous lymphomas in CWD mice is associated with the expression of endogenous ecotropic murine leukemia viruses (MuLV) and the formation of recombinant viruses. However, the pattern of substitution of nonecotropic sequences within the envelope genes of the CWD class II recombinant viruses differs from that seen in class I recombinant MuLVs of AKR, C58, and HRS mice. To determine how CWD host genes might influence the envelope gene structure of the recombinant viruses, we characterized the responses of these mice to two different types of exogenous MuLVs. Neonatal mice injected the HRS class I recombinant PTV-1 became infected and developed T-cell lymphomas more rapidly than controls did. The inoculation of CWD mice with the leukemogenic AKR ecotropic virus SL3-3 led to the formation of recombinant MuLVs with a novel genetic structure and class II-like envelope genes, although SL3-3 generates class I recombinants in other strains. These results suggest that the absence of class I recombinant MuLVs in CWD mice is not related to the restriction of the replication or oncogenicity of class I viruses or to the absence of an appropriate ecotropic virus that can generate class I recombinants. More likely, the genes of CWD mice that direct the formation or selection of class II recombinant viruses affect the process of recombination between the ecotropic and nonecotropic envelope gene sequences.  相似文献   

14.
By using T1 oligonucleotide fingerprinting and mapping techniques, we analyzed the genomic structure of retroviruses produced by thymocytes and splenocytes of reciprocal bone marrow-and thymus-grafted chimeras. We found that the genetic factor(s) derived from NZB mice that suppresses the development of thymic leukemia in (AKR X NZB)F1 mice also prevents the formation of recombinant leukemogenic viruses and the expression of preleukemic changes in the (AKR X NZB)F1 thymocytes. The NZB mouse gene or genes appeared to exert this suppressive effect by acting on the thymic reticuloepithelial cells and not on the thymic lymphocytes of (AKR X NZB)F1 hybrids. Prospective studies with thymic epithelial grafts from young mice showed that the AKR thymic epithelium could mediate the formation and expression of leukemogenic recombinant viruses and preleukemic changes in thymocytes that lead to the development of thymic leukemia, whereas the (AKR X NZB)F1 thymic epithelium was deficient in this regard. Our results also confirmed a previous observation that during in vivo generation of recombinant leukemogenic viruses, the acquisition of polytropic virus-related sequences in the 3' portion of the p15E gene and the U3 region and in the 5' part of the gp70 gene can occur independently.  相似文献   

15.
Hybridomas obtained from (NFS X AKR)F mice immunized with syngeneic cells infected with AKR-247 MCF virus produced antibodies specific for only AKR-247 or closely related MCF viruses which hare a previously defined MCF antigen (MCFA-3). These monoclonal antibodies recognized a new type of viral antigenic determinant which appeared to be a conformational determinant associated with the env precursor polyprotein (pr80env) or its disulfide-linked gp70-p15(E) complex (gp80) but not with free gp70 or p15(E) or any other virion or virus-induced protein.  相似文献   

16.
Characterization of target cells for MCF viruses in AKR mice   总被引:20,自引:0,他引:20  
M W Cloyd 《Cell》1983,32(1):217-225
The recombinant (MCF) class of murine leukemia virus appears to play an important role in lymphomagenesis in AKR and other mice. Although much effort has been extended in characterizing MCF viruses, relatively little is known about the cells they infect. I examined what cells were targets in AKR mice for both lymphomagenic and nonlymphomagenic MCF viruses. Lymphomagenic MCF viruses of thymic origin (AKR-247 and C58L1) were found to infect and replicate selectively in immature lymphocytes only present in thymic cortex, whereas nonlymphomagenic MCF viruses of splenic origin (C58v-1-C77 and C58v-2-C45) selectively infected and replicated in cells that appeared to B lymphocytes. Virus-binding studies suggested that neither T- nor B-lymphocyte tropisms were determined by selective attachment of virus to the respective cells. These findings demonstrate that in contrast with ecotropic viruses, which can infect many types of cells in the mouse, specific cellular tropisms can exist for MCF viruses, and that MCF infection, and therefore oncogenicity, is closely linked to cellular differentiation.  相似文献   

17.
The viral DNA genome of the leukemogenic Gross passage A virus was cloned in phage Charon 21A as an infectious molecule. The virus recovered by transfection with this infectious DNA was ecotropic, N-tropic, fibrotropic, and XC+. It was leukemogenic when reinjected into newborn SIM mice, indicating that ecotropic murine leukemia virus (MuLV) from an AKR mouse thymoma can harbor leukemogenic sequences. Its restriction map was similar to that of nonleukemogenic AKR MuLV, its putative parent, but differed at the 3' end and in the long terminal repeat (LTR). The nucleotide sequence of the Gross A virus LTR was identical to the AKR MuLV LTR sequence (Van Beveren et al., J. Virol. 41:542-556, 1982) in U5, R, and part of U3. All differences between both LTRs were found in U3. Only one copy of the U3 tandem direct repeat was conserved in the Gross A virus LTR, and it was rearranged by the insertion of a 36-base-pair sequence and by five point mutations. Only one additional point mutation common to several oncogenic MuLVs was present in U3. These structural changes in the U3 LTR and at the 3' end of the genome may be related to the leukemogenicity of this virus.  相似文献   

18.
Genomes of murine leukemia viruses isolated from wild mice.   总被引:41,自引:29,他引:12       下载免费PDF全文
The genomes of murine leukemia viruses (MuLV) isolated from wild mice have been studied. Detailed restriction endonuclease maps of the 8.8-kilobase (kb) unintegrated linear viral DNAs were derived for five ecotropic and five amphotropic MuLV's from California field mice, for Friend MuLV, and for one ecotropic and one xenotropic MuLV from Mus musculus castaneus. In general, the California MuLV's were similar in their leftward 6 kb (corresponding to the leftward long terminal repeat [LTR], gag, and pol) and rightward 1 kb (7.8 to 8.8 kb, corresponding to p15E and the rightward LTR). For the region spanning 6.0 to 7.7 kb (which includes the sequences that encode gp70) the amphotropic MuLV's shared few enzyme sites with the ecotropic MuLV's, although the California ecotropic MuLV's were highly related to each other in this region, as were the amphotropic MuLV's. Cross-hybridization studies between amphotropic and California ecotropic MuLV DNAs indicated that they were not homologous in the region 6.3 to 7.6 kb; the California ecotropic viral DNAs cross-hybridized in this region to AKR ecotropic MuLV. When the California viral DNAs were compared with AKR ecotropic viral DNA, many differences in enzyme sites were noted throughout the genome. The U3 regions of the wild mouse LTRs showed partial homology to this region in AKR MuLV. The LTR of Moloney MuLV was highly related to that of the California MuLV's, whereas the LTR of Friend MuLV appeared to be a recombinant between the two types of LTRs. The M. musculus castaneus isolates were most closely related to ecotropic and xenotropic MuLV's isolated from inbred mice. One amphotropic MuLV DNA was cloned from supercoiled viral DNA at its unique EcoRI site in pBR322. Viral DNAs with one and two LTRs were isolated. After digestion with EcoRI, DNAs of both types were infectious. It is concluded that ecotropic and amphotropic MuLV's differ primarily in the region which encodes gp70.  相似文献   

19.
Naturally occurring recombinant murine leukemia viruses (MuLVs), termed mink cell focus-inducing (MCF) viruses, are the proximal leukemogens in spontaneous thymic lymphomas of AKR mice. The mechanism by which these viruses transform lymphocytes is not clear. Previous studies have implicated either integrational activation of proto-oncogenes, chronic autocrine immune stimulation, and/or autocrine stimulation of growth factor receptors (e.g., interleukin 2 receptors) via binding of the viral env glycoprotein (gp70) to these receptors. Any one of these events could also involve activation of second messenger signaling pathways in the cell. We examined whether infection with oncogenic AKR-247 MCF MuLV induced transmembrane signaling cascades in thymocytes of AKR mice. Cyclic AMP levels were not changed, but there was enhanced turnover of phosphatidylinositol phosphates, with concomitant increases in diacyglycerol and inositol 1,4,5-triphosphate. Thus, phospholipase C activity was increased. Protein kinase C activity was also elevated in comparison to that in uninfected thymocytes. The above events occurred in parallel with MCF expression in the thymus and were chronically maintained thereafter. No changes in phospholipid turnover occurred in an organ which did not replicate the MCF virus (spleen) or in thymocytes of AKR mice infected with a thymotropic, nononcogenic MCF virus (AKV-1-C36). Therefore, only the oncogenic MCF virus induced phosphatidylinositol signal transduction. Flow cytometric comparison of cell surface gp70 revealed that AKR-247 MCF virus-infected thymocytes expressed more MCF virus gp70 than did thymocytes from AKV-1-C36 MCF virus-infected mice, suggesting that certain threshold quantities of MCF virus env glycoproteins may be involved in this signaling. This type of signal transduction is not induced by stimulation of the interleukin 2 receptor but is involved in certain oncogene systems (e.g., ras and fms). Its chronic induction by oncogenic MCF MuLV may thus initiate thymocyte transformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号