首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Butyrophilin and xanthine oxidase, major proteins of milk lipid globule membrane, both accounted for significantly higher percentages of total protein in membrane samples from Holstein than from Jersey animals. Both were high in membranes from animals in early lactation, both decreased in amount as lactation progressed to the midpoint, and then both rose in amount toward the end of lactation. In samples from both Holstein and Jersey animals, butyrophilin and xanthine oxidase were present in constant molar proportions of about 41. These proteins co-enriched together with low molecular weight GTP-binding proteins in a high salt and nonionic detergent insoluble fraction of milk lipid globule membrane. Butyrophilin and xanthine oxidase content of membranes was not related to milk lipid globule diameter, suggesting that these proteins alone may not be involved solely in anchoring the membrane to the lipid globule surface. However, the possibility that a complex composed in part of butyrophilin and xanthine oxidase serves an anchoring function remains a possibility.  相似文献   

2.
Differential scanning calorimetry was employed as an aid in examining the structure of the bovine milk fat globule membrane. At least six major endotherms are observed between 10 and 90°C, corresponding to order-disorder transitions of discrete structural domains of the membrane. These endothermic transitions occur at 16, 28, 43, 58, 68, and 75°C. The transitions occurring between 10 and 50°C were reversible, suggesting the involvement of lipid. However, the high temperature transitions were irreversible. The calorimetric C transition, centered at 43°C, was shown to involve neutral lipid, since the endotherm was reversible, insensitive to proteolysis, and similar to the endotherm of the isolated neutral lipid fraction of the milk fat globule membrane. The glycolipid and phospholipid fractions of the milk fat globule membrane yielded endotherms outside of the temperature range of the C transition. Another endotherm, the D transition (58°C), was found to involve the denaturation of the major membrane coat protein, butyrophilin (band 12). Evidence for this assignment included the following observations: (i) the nearly selective proteolysis of butyrophilin resulted in the complete removal of the D transition, (ii) the butyrophilin-enriched, Triton X-100-insoluble pellet of milk fat globule membrane yielded a relatively normal D transition, and (iii) the irreversible, disulfide-stabilized aggregation of butyrophilin occurred in the membrane solely at the temperature of the D transition. Furthermore, no other prominent milk fat globule membrane polypeptide formed these non-native disulfide crossbridges during the D transition. The sources of the other major endotherms of the milk fat globule membrane have not yet been assigned.  相似文献   

3.
Milk lipid globules of various species are surrounded by a membrane structure that is separated from the triglyceride core of the globule by a densely staining fuzzy coat layer of 10- to 50-nm thickness. This internal coat structure remains attached to the membrane during isolation and extraction with low- and high-salt buffers, is insoluble in nondenaturing detergents, and is enriched in an acidic glycoprotein (butyrophilin) with an apparent Mr of 67,000. Guinea pig antibodies against this protein, which show cross-reaction with the corresponding protein in some (goat) but not other (human, rat) species, have been used for localization of butyrophilin on frozen sections of various tissues from cow by immunofluorescence and electron microscopy. Significant reaction is found only in milk-secreting epithelial cells and not in other cell types of mammary gland and various epithelial tissues. In milk-secreting cells, the staining is restricted to the apical cell surface, including budding milk lipid globules, and to the periphery of the milk lipid globules contained in the alveolar lumina. These findings indicate that butyrophilin, which is constitutively secreted by surface budding in coordination with milk lipid production, is located at the apical surface and is not detected at basolateral surfaces, in endoplasmic reticulum, and in Golgi apparatus. This protein structure represents an example of a cell type-specific cytoskeletal component in a cell apex. It is suggested that this antigen provides a specific marker for the apical surface of milk- secreting cells and that butyrophilin is involved in the vectorial discharge of milk lipid globules.  相似文献   

4.
The milk-fat-globule membrane (MFGM) was isolated from guinea-pig milk and the membrane-associated proteins and glycoproteins characterized by electrophoretic techniques. Major components of the membrane included PAS-I, a sialoglycoprotein of Mr greater than or equal to 200000, the redox enzyme xanthine oxidase and the glycoprotein, butyrophilin. Membrane preparations also contained two other glycoproteins, GP-80 and GP-55, of Mr 80000 and 55000, respectively. Comparison of guinea-pig xanthine oxidase and butyrophilin with proteins from bovine MFGM by peptide mapping procedures, showed that the two proteins in both species were similar, but not identical. GP-55 may also be related to glycoproteins of Mr 45000 and 48000 in the bovine membrane. The integral and peripheral components of guinea-pig MFGM were identified by treating membrane preparations with sodium carbonate solutions at high pH and by partitioning the membrane proteins in solutions of Triton X-114. By these criteria xanthine oxidase and GP-55 appeared to be peripheral components and GP-80 an integral protein of the membrane. PAS-I and butyrophilin displayed hydrophilic properties in Triton X-114 solutions, but could not be removed from membrane preparations with sodium carbonate. Possible reasons for these ambiguous data are discussed. The observed similarity between several of the proteins of guinea-pig and bovine MFGM implies that these proteins may have specific functions related to milk secretion in mammary tissue, e.g. in the budding of milk-fat globules or the exocytosis of milk protein and lactose at the apical surface.  相似文献   

5.
The exact mechanism of secretion of the milk fat globule (MFG) from the mammary secretory cell is still controversial. We have previously suggested close involvement of Golgi vesicles in this process. This paper provides direct immunocytochemical evidence that butyrophilin is present in the Golgi stack and vesicles in ovine and caprine mammary glands. We suggest that it is the butyrophilin in the Golgi vesicle membrane that forms the specific association with the adipophilin on the lipid surface in the cytoplasm. Exocytosis of the associated Golgi vesicle will then initiate the process of MFG secretion. Further exocytosis of associated Golgi vesicles will continue and complete the process. Areas of the plasmalemma that have butyrophilin delivered by previous non-lipid associated Golgi exocytoses may also contribute to the process of forming the milk fat globule membrane (MFGM).  相似文献   

6.
Upon combining bidimensional electrophoresis with monodimensional separation, a more comprehensive analysis of the milk fat globule membrane has been obtained. The proteomic profile of caprine milk fat globules revealed the presence of butyrophilin, lactadherin and perilipin as the major proteins, they were also associated to bovine and human milk fat globule membranes. Xanthine dehydrogenase/oxidase has been detected only in monodimensional gels. Biological activity of milk fat globules has been evaluated in Caco2-cells, as a representative model of the intestinal barrier. The increase of cell viability was indicative of a potential nutraceutical role for the whole milk fat globule, suggesting a possible employment in milk formula preparation.  相似文献   

7.
Differential scanning calorimetry of bovine milk fat globule membranes (MFGM) yields five to eight transitions, depending on the conditions employed during isolation and assay of the membranes. Transitions A, B, and C were shown in a previous publication to derive from lipid melting, while transition D was found to stem from the unfolding of a structural protein termed butyrophilin [K. C. Appell, T. W. Kennan, and P. S. Low (1982) Biochim. Biophys. Acta 690, 243-250]. In this report we present evidence that the E1, E2, and F endotherms derive from the major MFGM protein, xanthine oxidase. Support for this contention derives from (i) thermal gel analysis; (ii) thermal inactivation analysis; (iii) comparison of the calorimetric properties of endotherms I, II, and III of purified xanthine oxidase with transitions E1, E2, and F of MFGM; (iv) comparison of the properties of a peculiar exotherm in scans of both the purified enzyme and MFGM; and (v) examination of the effects of specific ligands, reducing agents, and pH on both the xanthine oxidase and MFGM transition. The existence of three independent endotherms (I, II, and III) in purified xanthine oxidase demonstrates that the enzyme is composed of multiple independent domains. The interconversion of transitions I (E1) and II (E2) with a change in the redox conditions of the medium implies that these two transitions may be manifestations of the interconvertible dehydrogenase and oxidase forms of the enzyme, respectively. The relative independence of the I/II transitions from transition III further shows that only slight interaction between the major domains of xanthine oxidase exists.  相似文献   

8.
Lipid globule membranes were isolated from human and bovine milk and from the milk of sheep, goat, pig, rat and guinea pig, and their polypeptide compositions were analyzed. The major polypeptides with molecular weights similar to that of bovine butyrophilin were separated by gel electrophoresis, isolated and characterized with respect to isoelectric point, molecular weight, immunological cross-reactivity and peptide composition after proteolytic cleavage. We show that in all species examined these proteins are similar to bovine butyrophilin in (i) their relative insolubility in buffers of low and high ionic strength and in non-denaturing detergents, (ii) the occurrence of several isoelectric variants, and (iii) patterns of peptides obtained by protease digestion. It is concluded that closely related proteins are major constituents of the cytoplasmic coat structures associated with milk lipid globule membranes of many species, and we propose the name butyrophilins for this group of proteins. Bovine and human butyrophilins are glycosylated with relatively large amounts of glucosamine, mannose, glucose and galactose but little fucose, sialic acids or galactosamine. Most if not all of the sugar residues are associated with an acetone-soluble peptide fragment of Mr 12 000–16 000 focusing at about pH 4.0. We suggest that this fragment contains a membrane-spanning peptide sequence and is involved in the attachment of the cytoplasmic coat to the membrane of the milk lipid globule.  相似文献   

9.
Fractions enriched in secretory vesicles were obtained from lactating bovine mammary tissue by a straightforward procedure involving gentle homogenization and centrifugation in isotonic milk salt solution containing Ficoll. Secretory vesicle-rich fractions could also be obtained from lactating rat mammary gland by this procedure. With rats, yields of vesicles were substantially increased by administration of colchicine or thioglucose to animals several hours before sacrifice. Isolated fractions were enriched in lactose and consisted predominantly of 0.2–1.2 μm diameter vesicles, many of which contained casein micelles. Enzymatic, compositional and morphological examination revealed vesicle preparations to be largely free of contamination by rough endoplasmic reticulum, mitochondria, nuclei, peroxisomes and lysosomes. Specific activity of several marker enzymes of the secretory vesicle fraction were similar to, or intermediate between, Golgi apparatus and milk lipid globule membranes. Amounts of cholesterol and gangliosides in vesicle fractions approached levels found in plasma membranes. In distribution of major phospholipids, secretory vesicles were intermediate between Golgi apparatus and milk lipid globule membranes. The pattern of polypeptides of secretory vesicle membrane was qualitatively similar to that of Golgi apparatus membranes. While there were similarities between these polypeptide patterns and that of lipid globule membranes, the latter contained relatively more of certain polypeptides, particularly the internal coat-associated polypeptides of the globule membrane. These observations are discussed in relation to the endomembrane hypothesis and the origin of the membrane of milk lipid globules.  相似文献   

10.
Detergent solubilized bovine milk fat globule membrane material studied by crossed immunoelectrophoresis combined with histochemical techniques revealed four major protein complexes. All four were found to bind to concanavalin A and three were identified as sialoglycoproteins. Xanthine oxidase activity was associated with the non-sialoglycoprotein precipitate. Immunoabsorption with intact milk fat globules showed an internal location of the xanthine oxidase, whereas the three other main proteins plus Mg2+-ATPase and 5'-nucleotidase were disposed on the outer membrane surface. The major proteins from milk fat globule membrane and membrane material isolated from skim milk showed immunochemical identity.  相似文献   

11.
Mammary gland and epithelial cells are unique to mammals and are under the control of lactogenic hormones such as prolactin. Recent findings indicated that major components of milk fat globule membrane (MFGM) are under the control of lactogenic hormones, and that the major components butyrophilin and xanthine oxidoreductase are indispensable for milk fat secretion. Further, prolactin signaling is negatively controlled by two highly related protein tyrosine phosphatases, PTP1B and TC-PTP. Milk fat globule EGF factor 8 (MFG-E8) is one of the major components of MFGM and is upregulated during lactation. MFG-E8 is further upregulated in the involuting mammary gland. MFG-E8 on exosome-like membrane vesicles in the milk recovered from post-weaning but not lactating mammary glands exhibits higher binding activity to phosphatidylserine and apoptotic mammary epithelial cells, and serves as a link between apoptotic mammary epithelial cells and phagocytes. Recent reports using MFG-E8 deficient mice support the view that MFG-E8 is indispensable for eliminating apoptotic mammary epithelial cells during involution.  相似文献   

12.
Erratum     
Detergent solubilized bovine milk fat globule membrane material studied by crossed immunoelectrophoresis combined with histochemical techniques revealed four major protein complexes. All four were found to bind to concanavalin A and three were identified as sialoglycoproteins. Xanthine oxidase activity was associated with the non-sialoglycoprotein precipitate. Immunoabsorption with intact milk fat globules showed an internal location of the xanthine oxidase, whereas the three other main proteins plus Mg2+-ATPase and 5′-nucleotidase were disposed on the outer membrane surface. The major proteins from milk fat globule membrane and membrane material isolated from skim milk showed immunochemical identity.  相似文献   

13.
Camel milk has been widely characterized with regards to casein and whey proteins. However, in camelids, almost nothing is known about the milk fat globule membrane (MFGM), the membrane surrounding fat globules in milk. The purpose of this study was thus to identify MFGM proteins from Camelus dromedarius milk. Major MFGM proteins (namely, fatty acid synthase, xanthine oxidase, butyrophilin, lactadherin, and adipophilin) already evidenced in cow milk were identified in camel milk using MS. In addition, a 1D‐LC‐MS/MS approach led us to identify 322 functional groups of proteins associated with the camel MFGM. Dromedary MFGM proteins were then classified into functional categories using DAVID (the Database for Annotation, Visualization, and Integrated Discovery) bioinformatics resources. More than 50% of MFGM proteins from camel milk were found to be integral membrane proteins (mostly belonging to the plasma membrane), or proteins associated to the membrane. Enriched GO terms associated with MFGM proteins from camel milk were protein transport (p‐value = 1.73 × 10?14), translation (p‐value = 1.08 × 10?11), lipid biosynthetic process (p‐value = 6.72 × 10?10), hexose metabolic process (p‐value = 1.89 × 10?04), and actin cytoskeleton organization (p‐value = 2.72 × 10?04). These findings will help to contribute to a better characterization of camel milk. Identified MFGM proteins from camel milk may also provide new insight into lipid droplet formation in the mammary epithelial cell.  相似文献   

14.
1. Glycoproteins of bovine (Bos taurus) and human (Homo sapiens) milk lipid globule membranes were characterized by ability to bind lectins after electrophoretic separation. 2. Seven lectin receptor glycoproteins were detected in bovine and five in human milk lipid globule membranes. Bovine and human globule membrane glycoproteins differed in ability to interact with certain lectins. 3. Two major nonionic detergent insoluble glycoproteins were present in bovine and human lipid globule membrane; these constituents had apparent molecular weights of 155,000 and 69,000. Detergent-insoluble polypeptides with similar or identical electrophoretic mobilities were found in milk lipid globule membranes from four other species, rat (Rattus norvegicus), sheep (Ovis aries), pig (Sus scrofa) and goat (Capra hircus). Tryptic peptide mapping revealed these polypeptides to be nonidentical among species.  相似文献   

15.
Exosomes are 40-100 nm membrane vesicles of endocytic origin, secreted by cells and are found in biological fluids including milk. These exosomes are extracellular organelles important in intracellular communication, and immune function. Therefore, the proteome of bovine milk exosomes may provide insight into the complex processes of milk production. Exosomes were isolated from the milk of mid-lactation cows. Purified exosomes were trypsin digested, subjected offline high pH reverse phase chromatography and further fractionated on a nanoLC connected to tandem mass spectrometer. This resulted in identification of 2107 proteins that included all of the major exosome protein markers. The major milk fat globule membrane (MFGM) proteins (Butyrophilin, Xanthine oxidase, Adipophilin and Lactadherin) were the most abundant proteins found in milk exosomes. However, they represented only 0.4-1.2% of the total spectra collected from milk exosomes compared to 15-28% of the total spectra collected in the MFGM proteome. These data show that the milk exosome secretion pathway differs significantly from that of the MFGM in part due to the greatly reduced presence of MFGM proteins. The protein composition of milk exosomes provides new information on milk protein composition and the potential physiological significance of exosomes to mammary physiology.  相似文献   

16.
Milk lipid is secreted by a unique process, during which triacylglycerol droplets bud from mammary cells coated with an outer bilayer of apical membrane. In all current schemes, the integral protein butyrophilin 1A1 (BTN) is postulated to serve as a transmembrane scaffold, which interacts either with itself or with the peripheral proteins, xanthine oxidoreductase (XOR) and possibly perilipin‐2 (PLIN2), to form an immobile bridging complex between the droplet and apical surface. In one such scheme, BTN on the surface of cytoplasmic lipid droplets interacts directly with BTN in the apical membrane without binding to either XOR or PLIN2. We tested these models using both biochemical and morphological approaches. BTN was concentrated in the apical membrane in all species examined and contained mature N‐linked glycans. We found no evidence for the association of unprocessed BTN with intracellular lipid droplets. BTN‐enhanced green fluorescent protein was highly mobile in areas of mouse milk‐lipid droplets that had not undergone post‐secretion changes, and endogenous mouse BTN comprised only 0.5–0.7% (w/w) of the total protein, i.e. over 50‐fold less than in the milk‐lipid droplets of cow and other species. These data are incompatible with models of milk‐lipid secretion in which BTN is the major component of an immobile global adhesive complex and suggest that interactions between BTN and other proteins at the time of secretion are more transient than previously predicted. The high mobility of BTN in lipid droplets marks it as a potential mobile signaling molecule in milk .  相似文献   

17.
    
Summary Previousin situ hybridization studies from our laboratory have shown that expression of certain milk protein genes, e.g. α-lactalbumin, is very high in most parts of the mammary glands of sheep and cattle, while in other areas containing an abundance of fat globules it is virtually zero (Molenaaret al., 1992). One possible explanation is that some areas of the mammary gland are dedicated to protein synthesis and some to fat synthesis. To check this possibility, the cRNA for butyrophilin, a milk-fat globule membrane protein, and hence a putative marker of milk fat synthesis, was used as a probe inin situ hybridization studies. The results show quite clearly that the patterns of expression for this gene are similar, cell type for cell type, as those for milk protein genes such as α-lactalbumin and αs1casein. In addition, we found that butyrophilin gene expression more closely matches that of αS1casein than that of α-lactalbumin. If it is shown in the future that butyrophilin is indeed a marker for milk fat synthesis, then these results support the current assumption that fat and protein synthesis do occur in the same cell.  相似文献   

18.
The peroxidative oxidation of extracted rat liver microsomal lipid, assayed as malondialdehyde production, can be promoted by milk xanthine oxidase in the presence of 0.2 mM FeCl3 and 0.1 mM EDTA. The reaction is inhibited by the superoxide dismutase activity of erythrocuprein. The reaction is also inhibited by 1,3-diphenylisobenzofuran, which reacts with singlet oxygen to yield dibenzoylbenzene. During inhibition of the lipid peroxidation reaction by 1,3-diphenylisobenzofuran, o-dibenzoylbenzene was produced. The rate of superoxide production by xanthine oxidase was not affected by 1,3-diphenylisobenzofuran. Lipid peroxidation promoted by ascorbic acid is not inhibited by either erythrocuprein or 1,3-diphenylisobenzofuran. Therefore it is suggested that the peroxidative oxidation of unsaturated lipid promoted by xanthine oxidase involves the formation of singlet oxygen from superoxide, and the singlet oxygen reacts with the lipid to form fatty acid hydroperoxides.  相似文献   

19.
1. The catalytic properties of xanthine oxidase in bovine milk (EC 1.2.3.2) are dependent on the state of the enzyme, i.e. whether free or bound to the fat-globule membrane. Oxidase activity of the membrane-bound enzyme towards NADH is enhanced relative to that towards xanthine. This reflects a change in the relative K(m) values and enables the ratio of xanthine to NADH oxidase activities (X/N) to be used as a parameter for the relative amounts of free and membrane-bound xanthine oxidase in milk fractions. 2. Chromatography of buttermilk on Sepharose 2B yielded an excluded fraction, BM(1), with xanthine oxidase activity. The remaining xanthine oxidase activity was eluted as a single broad peak. This was further resolved on Sephadex G-200 into an excluded fraction, BM(2), and free xanthine oxidase. Fractions BM(1) and BM(2) had X/N values in the range 45-65, which is characteristic of membrane-bound xanthine oxidase. Purified xanthine oxidase has a mean X/N value of 110.3. Addition of fraction BM(1), heated to remove associated enzyme activities, to purified xanthine oxidase progressively enhanced its NADH oxidase activity to a value where its X/N value was characteristic of membrane-bound xanthine oxidase. This was shown to be due to binding of free enzyme to heated fraction BM(1). The binding constant and stoicheiometry were determined. 4. Proteolytic digestion of fraction BM(1) liberated free xanthine oxidase from the fat-globule membrane with a corresponding alteration in X/N value.  相似文献   

20.
Studies have been made on the possible involvement of malondialdehyde (MDA) and (E)-4-hydroxynon-2-enal (HNE), two terminal compounds of lipid peroxidation, in modifying xanthine oxidoreductase activity through interaction with the oxidase (XO) and/or dehydrogenase (XDH) forms. The effect of the two aldehydes on XO (reversible, XO(rev), and irreversible, XO(irr)) and XDH was studied using xanthine oxidase from milk and xanthine oxidoreductase partially purified from rat liver. The incubation of milk xanthine oxidase with these aldehydes resulted in the inactivation of the enzyme following pseudo-first-order kinetics: enzyme activity was completely abolished by MDA (0.5-4 mM), while residual activity (5% of the starting value) associated with an XO(irr) form was always observed when the enzyme was incubated in the presence of HNE (0.5-4 mM). The addition of glutathione to the incubation mixtures prevented enzyme inactivation by HNE. The study on the xanthine oxidoreductase partially purified from rat liver showed that MDA decreases the total enzyme activity, acting only with the XO forms. On the contrary HNE leaves the same level of total activity but causes the conversion of XDH into an XO(irr) form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号