首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutation to tetracycline sensitivity in a resistant strain of Streptococcus pneumoniae was shown by several criteria to be due to a point mutation in the conjugative omega (cat-tet) element found in the chromosomes of strains derived from BM6001, a clinical strain resistant to tetracycline and chloramphenicol. Strains carrying the mutation were transformed back to tetracycline resistance with the high efficiency of a point marker by donor deoxyribonucleic acids from its ancestral strain and from nine other clinical isolates of pneumococcus and by deoxyribonucleic acids from group D Streptococcus faecalis and group B Streptococcus agalactiae strains that also carry conjugative tet elements in their chromosomes. It was not transformed to resistance by tet plasmid deoxyribonucleic acids from either gram-negative or gram-positive species, except for one that carried transposon Tn916, the conjugative tet element present in the chromosomes of some S. faecalis strains. The results showed that the tet determinants in conjugative elements of several streptococcal species share a high degree of deoxyribonucleic acid sequence homology and suggested that they differ from other tet genes.  相似文献   

2.
Plasmid deoxyribonucleic acid (DNA) from Streptococcus faecalis, strain DS5, was transferred to the Challis strain of Streptococcus sanguis by transformation. Two antibiotic resistance markers carried by the beta plasmid from strain DS5, erythromycin and lincomycin, were transferred to S. sanguis at a maximum frequency of 1.8 x 10-5/colony-forming unit. Approximately 70% of the covalently closed circular DNA isolated from transformant cultures by dye buoyant density gradients was shown to be hybridizable to beta plasmid DNA. Two major differences were observed between the beta plasmid from S. faecalis and the plasmid isolated from transformed S. sanguis: (i) the beta plasmid from strain DS5 sedimented in velocity gradients at 43S, whereas the covalently closed circular DNA from transformed Challis sedimented at 41S, suggesting a 1.5-Mdal deletion from the beta plasmid occurred; (ii) although the 43S beta plasmid remained in the supercoiled configuration for several weeks after isolation, the 41S plasmid was rapidly converted to a linear double-stranded molecule. Attempts to transform S. sanguis with the alpha plasmid from S. faecalis, strain DS5, were unsuccessful.  相似文献   

3.
Integration of pCI192, a pBR322-derived vector plasmid containing homology to the chromosomally located conjugative transposon Tn919 was observed in two strains that harbor Tn919, namely, Enterococcus faecalis GF590 and Lactococcus lactis subsp. lactis CH919. Hybridization analysis indicated that single-copy integration of the plasmid had occurred at low frequency. The Tn919::plasmid structure was conjugated from an E. faecalis donor to a L. lactis recipient, although at lower frequencies than was Tn919. Segregation of the tetracycline and chloramphenicol resistance markers during conjugation was observed. The integration strategy described allows for DNA manipulations to be performed in an easily manipulated model host strain with the subsequent transfer of integrated structures by conjugation to any strain capable of receiving Tn919. The results indicate that homologous recombination events may be used to introduce plasmid-encoded genes to the lactococcal chromosome.  相似文献   

4.
Integration of pCI192, a pBR322-derived vector plasmid containing homology to the chromosomally located conjugative transposon Tn919 was observed in two strains that harbor Tn919, namely, Enterococcus faecalis GF590 and Lactococcus lactis subsp. lactis CH919. Hybridization analysis indicated that single-copy integration of the plasmid had occurred at low frequency. The Tn919::plasmid structure was conjugated from an E. faecalis donor to a L. lactis recipient, although at lower frequencies than was Tn919. Segregation of the tetracycline and chloramphenicol resistance markers during conjugation was observed. The integration strategy described allows for DNA manipulations to be performed in an easily manipulated model host strain with the subsequent transfer of integrated structures by conjugation to any strain capable of receiving Tn919. The results indicate that homologous recombination events may be used to introduce plasmid-encoded genes to the lactococcal chromosome.  相似文献   

5.
A new animal model, the streptomycin-treated mini-pig, was developed in order to allow colonization of defined strains of Enterococcus faecalis in numbers sufficient to study plasmid transfer. Transfer of the pheromone-inducible pCF10 plasmid between streptomycin-resistant strains of E. faecalis OG1 was investigated in the model. The plasmid encodes resistance to tetracycline. Numbers of recipient, donor, and transconjugant bacteria were monitored by selective plating of fecal samples, and transconjugants were subsequently verified by PCR. After being ingested by the mini-pigs, the recipient strain persisted in the intestine at levels between 10(6) and 10(7) CFU per g of feces throughout the experiment. The donor strain, which carried different resistance markers but was otherwise chromosomally isogenic to the recipient strain, was given to the pigs 3 weeks after the recipient strain. The donor cells were initially present in high numbers (10(6) CFU per g) in feces, but they did not persist in the intestine at detectable levels. Immediately after introduction of the donor bacteria, transconjugant cells appeared and persisted in fecal samples at levels between 10(3) and 10(4) CFU per g until the end of the experiment. These observations showed that even in the absence of selective tetracycline pressure, plasmid pCF10 was transferred from ingested E. faecalis cells to other E. faecalis organisms already present in the intestinal environment and that the plasmid subsequently persisted in the intestine.  相似文献   

6.
A rapid and simple technique was developed for conjugation between group N and group D streptococci by using cells entrapped within calcium alginate gel beads. With this method, the frequencies of transfer of lactose metabolism from Streptococcus lactis ME2 to S. lactis LM2302 were comparable to those achieved with agar surface matings. Conjugal transfer of the chloramphenicol and erythromycin resistance plasmid pVA797::Tn917 from S. faecalis V1229 to S. faecalis V1102 in alginate beads occurred at frequencies comparable to those achieved with filter matings. The results demonstrated efficient conjugal transfer of plasmid DNA among alginate-immobilized streptococcal cells and suggested that this method could be used as an alternative to conventional solid-surface and filter matings with these organisms.  相似文献   

7.
A rapid and simple technique was developed for conjugation between group N and group D streptococci by using cells entrapped within calcium alginate gel beads. With this method, the frequencies of transfer of lactose metabolism from Streptococcus lactis ME2 to S. lactis LM2302 were comparable to those achieved with agar surface matings. Conjugal transfer of the chloramphenicol and erythromycin resistance plasmid pVA797::Tn917 from S. faecalis V1229 to S. faecalis V1102 in alginate beads occurred at frequencies comparable to those achieved with filter matings. The results demonstrated efficient conjugal transfer of plasmid DNA among alginate-immobilized streptococcal cells and suggested that this method could be used as an alternative to conventional solid-surface and filter matings with these organisms.  相似文献   

8.
pMV158, a non-self-transmissible plasmid encoding tetracycline resistance, was conjugally transferred from Enterococcus faecalis JH203 to Lactococcus lactis subsp. lactis IL1403. This transfer appeared to be dependent on the cotransfer of the conjugative plasmids pAM beta 1 or pIP501. Intraspecies conjugal transfer of pMV158 also occurred in strain IL1403. In contrast to the transfer from E. faecalis, transfer in IL1403 did not require the presence of a conjugative plasmid in the donor strain but, rather, appeared to be dependent on putative chromosomal functions in strain IL1403. The transfer of pMV158 from strain IL1403 required the presence of an active pMV158-encoded protein, which showed homology to the Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from Staphylococcus aureus, such as pT181.  相似文献   

9.
The multi-drug-resistant strain Streptococcus faecalis BIO-4R was studied to see if it carried a plasmid responsible for antibiotic resistance. From results indicating that the antibiotic resistance of S. faecalis BIO-4R was not transferred to recipient bacteria, that the organism did not produce enzymes which inactivated antibiotics, and that the presence of covalently closed circular DNA was not demonstrated by dye-cesium chloride buoyant density gradient centrifugation, it was concluded that the organism did not carry such a plasmid. Studies on polyphenylalanine synthesis by cell-free extracts of the oganism showed that its ribosomes were resistant to chloramphenicol, tetracycline, streptomycin and kanamycin. These results, although rather indirectly, support the above notion that the multi-drug-resistance of S. faecalis BIO-4R is not mediated by a plasmid.  相似文献   

10.
Strains of Streptococcus faecalis var. zymogenes, designated JH1 and JH3, produced a hemolysin and a bacteriocin. Hemolytic activity was lost from a low percentage of cells grown in broth at either 37 or 45 C. All nonhemolytic (Hly-) variants had lost bacteriocin activity (Ben-), and those from strain JH3 had also lost resistance to the bacteriocin (Bnr-). The majority of Hly-, Ben- variants from JH1 retained bacteriocin resistance (Bnrplus). Strains JH1 and JH3 contained a plasmid deoxyribonucleic acid species of molecular weight 38 times 10-6 (plasmids pJH2 and pJH3, respectively), and strain JH1 also contained a 50 times 10-6 molecular weight plasmid (pJH1) which has previously been shown to carry the genes determining resistance to the antibiotics kanamycin, neomycin, streptomycin, erythromycin, and tetracycline. Hly-, Bcn-, Bnr- variants of strain JH3 had completely lost plasmid pJH3. Hly-, Bcn-, Bnr- variants of strain JH1 had completely lost plasmid pJH2 and retained plasmid pJH1, but Hly-, Bcn-, Bnrplus variants had retained both plasmids pJH2 and pJH1. The Hlyplus, Bcnplus, Bnrplus traits from both parental strains were transferable to nonhemolytic S. faecalis strains during mixed incubation in broth at 37 C, and hemolytic recipient strains were found to have received plasmid pJH2 from strain JH1 and pJH3 from JH3. We conclude that the Hlyplus, Bnrplus traits are borne on plasmid pJH2 in strain JH1 and pJH3 in strain JH3 and that, in Hly-, Bcn-, Bnrplus variants of strain JH1, plasmic pJH2 has suffered a mutation affecting hemolysin and bacteriocin expression. We infer that the plasmids transfer by conjugation. Beta-hemolytic activity is the only property distinguishing the zymogenes variety from S. faecalis. Since we have shown that this activity is plasmid borne in strains JH1 and JH3, we endorse the view that the varietal status of zymogenes should be dropped.  相似文献   

11.
The cryptic plasmid pRUT41 from Zymomonas mobilis was examined for its biological properties. This plasmid was found to be conjugally transferred from Z. mobilis CP4 to Escherichia coli BM21 and to carry genes for antibiotic resistance (gentamicin, kanamycin, and streptomycin). Covalently closed circular plasmid DNA was isolated from eight transconjugants of E. coli BM21. These plasmids were identical in mobility on agarose gels and exhibited the same restriction patterns as the native pRUT41 plasmid isolated from Z. mobilis. The plasmid location of the antibiotic resistance genes was further confirmed by transforming E. coli BM21 with isolated pRUT41 plasmid from strain CP4 and with plasmids from the transconjugants of BM21. Resistance to streptomycin, kanamycin, and gentamicin was tightly linked and transferred together in all cases.  相似文献   

12.
The cryptic plasmid pRUT41 from Zymomonas mobilis was examined for its biological properties. This plasmid was found to be conjugally transferred from Z. mobilis CP4 to Escherichia coli BM21 and to carry genes for antibiotic resistance (gentamicin, kanamycin, and streptomycin). Covalently closed circular plasmid DNA was isolated from eight transconjugants of E. coli BM21. These plasmids were identical in mobility on agarose gels and exhibited the same restriction patterns as the native pRUT41 plasmid isolated from Z. mobilis. The plasmid location of the antibiotic resistance genes was further confirmed by transforming E. coli BM21 with isolated pRUT41 plasmid from strain CP4 and with plasmids from the transconjugants of BM21. Resistance to streptomycin, kanamycin, and gentamicin was tightly linked and transferred together in all cases.  相似文献   

13.
Enterococci are among the most notorious bacteria involved in the spread of antibiotic resistance (ABR) determinants via horizontal gene transfer, a process that leads to increased prevalence of antibiotic-resistant bacteria. In complex microbial communities with a high background of ABR genes, detection of gene transfer is possible only when the ABR determinant is marked. Therefore, the conjugative multiresistance plasmid pRE25, originating from a sausage-associated Enterococcus faecalis, was tagged with a 34-bp random sequence marker spliced by tet(M). The plasmid constructed, designated pRE25(*) , was introduced into E. faecalis CG110/gfp, a strain containing a gfp gene as chromosomal marker. The plasmid pRE25(*) is fully functional compared with its parental pRE25, occurs at one to two copies per chromosome, and can be transferred to Listeria monocytogenes and Listeria innocua at frequencies of 6 × 10(-6) to 8 × 10(-8) transconjugants per donor. The markers on the chromosome and the plasmid enable independent quantification of donor and plasmid, even if ABR genes occur at high numbers in the background ecosystem. Both markers were stable for at least 200 generations, permitting application of the strain in long-running experiments. Enterococcus faecalis CG110/gfp/pRE25(*) is a potent tool for the investigation of horizontal ABR gene transfer in complex environments such as food matrices, biofilms or colonic models.  相似文献   

14.
The occurrence, structure, and mobility of Tn1546-like elements were studied in environmental vancomycin-resistant enterococci (VRE) isolated from municipal sewage, activated sludge, pharmaceutical waste derived from antibiotic production, seawater, blue mussels, and soil. Of 200 presumptive VRE isolates tested, 71 (35%) harbored vanA. Pulsed-field gel electrophoresis analysis allowed the detection of 26 subtypes, which were identified as Enterococcus faecium (n = 13), E. casseliflavus (n = 6), E. mundtii (n = 3), E. faecalis (n = 3), and E. durans (n = 1) by phenotypic tests and 16S ribosomal DNA sequencing. Long PCR-restriction fragment length polymorphism (L-PCR-RFLP) analysis of Tn1546-like elements and PCR analysis of internal regions revealed the presence of seven groups among the 29 strains studied. The most common group (group 1) corresponded to the structure of Tn1546 in the prototype strain E. faecium BM4147. Two novel L-PCR-RFLP patterns (groups 3 and 4) were found for E. casseliflavus strains. Indistinguishable Tn1546-like elements occurred in VRE strains belonging to different species or originating from different sources. Interspecies plasmid-mediated transfer of vancomycin resistance to E. faecium BM4105 was demonstrated for E. faecalis, E. mundtii, and E. durans. This study indicates that VRE, including species other than E. faecium and E. faecalis, are widespread in nature and in environments that are not exposed to vancomycin selection and not heavily contaminated with feces, such as seawater, blue mussels, and nonagricultural soil. Tn1546-like elements can readily transfer between enterococci of different species and ecological origins, therefore raising questions about the origin of these transposable elements and their possible transfer between environmental and clinical settings.  相似文献   

15.
A strain of Streptococcus faecalis var. zymogenes, designated JH1, had high-level resistance to the antibiotics streptomycin, kanamycin, neomycin, erythromycin, and tetracycline. These resistances were lost en bloc from approximately 0.1% of cells grown in nutrient broth at 45 C. The frequency of resistance loss was not increased by growth in the presence of the "curing" agents acriflavine or acridine orange, but after prolonged storage in nutrient agar 17% of cells became antibiotic sensitive. Covalently closed circular deoxyribonucleic acid (DNA) molecules were isolated from the parental strain and from antibiotic-sensitive segregants by using cesium chloride-ethidium bromide gradients. DNA molecular species were identified by using neutral sucrose gradients. Strain JH1 contained two covalently closed circular DNA species of molecular weights 50 x 10(6) and 38 x 10(6). An antibiotic-sensitive segregant, strain JH1-9, had lost the larger molecular species. A second sensitive segregant, strain JH1-5, had also lost the larger molecular species but a new molecular species of approximate molecular weight 6 x 10(6) was present. The antibiotic resistances that were curable from the parental strain were transferred to antibiotic-sensitive strains of S. faecalis and to strain JH1-9, during mixed incubation in nutrient broth at 37 C. Data to be described are interpreted to suggest that the transfer is by a conjugal mechanism. Analysis of the plasmid species in recipient clones showed that all had received the plasmid of molecular weight 50 x 10(6). Strain JH1-5 was not a good recipient. Analysis of one successful recipient clone of JH1-5 revealed that it had gained the 50 x 10(6) molecular weight plasmid but lost the 6 x 10(6) molecular weight species. These data are interpreted to mean that the multiple antibiotic resistance is borne by a transferable plasmid of 50 x 10(6) molecular weight, and that in clone JH1-5 this plasmid suffered a large deletion leaving only a 6 x 10(6) remnant which was incompatible with the complete replicon.  相似文献   

16.
Plasmid-mediated resistance to fosfomycin in Staphylococcus epidermidis   总被引:2,自引:0,他引:2  
Staphylococcus epidermidis strain BM2641, isolated from a patient, was resistant to penicillin G, methicillin, aminoglycosides, chloramphenicol, macrolide, lincosamide and streptogramin B-type (MLS) antibiotics, and to high levels of fosmycin. Resistance to forsfomycin and/or to MLS was lost at low frequencies either spontaneously or after curing with novobiocin. The plasmid DNA from BM2641 and its cured derivatives was purified, analyzed by agarose gel electrophoresis and transferred to a nitrocellulose sheet. Comparative analysis of the resistance phenotypes with the plasmid content of the strains indicated that fosfomycin and MLS resistance were encoded by plasmids pIP1842 (2.5 kb) and pIP1843 (2.6 kb), respectively. Southern hybridization with a probe specific for gene fosA of Serratia marcescens showed that the fosfomycin resistance determinant in Staphylococcus is not homologous to that of Gram-negative bacteria.  相似文献   

17.
Transfer of the broad-host-range resistance plasmid pIP501 from Streptococcus faecalis to Pediococcus pentosaceus and Pediococcus acidilactici occurred between cells immobilized on nitrocellulose filters in the presence of DNase. Expression of the pIP501-linked erythromycin and chloramphenicol resistance determinants was observed in transconjugants. Intrageneric transfer of pIP501 from a P. pentosaceus donor to various pediococcal recipients occurred at frequencies of 10(-4) to 10(-7) transconjugants per input donor cell. Intergeneric transfer of plasmid pIP501 from P. pentosaceus to S. faecalis, Streptococcus sanguis (Challis), and Streptococcus lactis was observed. Similar mating experiments showed no evidence for the transfer of the broad-host-range R-plasmid pAM beta 1 to Pediococcus spp. recipients.  相似文献   

18.
Transfer of the broad-host-range resistance plasmid pIP501 from Streptococcus faecalis to Pediococcus pentosaceus and Pediococcus acidilactici occurred between cells immobilized on nitrocellulose filters in the presence of DNase. Expression of the pIP501-linked erythromycin and chloramphenicol resistance determinants was observed in transconjugants. Intrageneric transfer of pIP501 from a P. pentosaceus donor to various pediococcal recipients occurred at frequencies of 10(-4) to 10(-7) transconjugants per input donor cell. Intergeneric transfer of plasmid pIP501 from P. pentosaceus to S. faecalis, Streptococcus sanguis (Challis), and Streptococcus lactis was observed. Similar mating experiments showed no evidence for the transfer of the broad-host-range R-plasmid pAM beta 1 to Pediococcus spp. recipients.  相似文献   

19.
We determined the sequence and genetic organization of plasmid pIP823, which contains the dfrD gene; dfrD confers high-level trimethoprim resistance to Listeria monocytogenes BM4293 by synthesis of dihydrofolate reductase type S2. pIP823 possessed all the features of the pUB110/pC194 plasmid family, whose members replicate by the rolling-circle mechanism. The rep gene encoded a protein identical to RepU, the protein required for initiation of the replication of plasmids pTB913 from a thermophilic Bacillus sp. and pUB110 from Staphylococcus aureus. The mob gene encoded a protein with a high degree of amino acid identity with the Mob proteins involved in conjugative mobilization and interplasmidic recombination of pTB913 and pUB110. The host range of pIP823 was broad and included L. monocytogenes, Enterococcus faecalis, S. aureus, Bacillus subtilis, and Escherichia coli. In all these species, pIP823 replicated by generating single-stranded DNA and was stable. Conjugative mobilization of pIP823 was obtained by self-transferable plasmids between L. monocytogenes and E. faecalis, between L. monocytogenes and E. coli, and between strains of E. coli, and by the streptococcal conjugative transposon Tn1545 from L. monocytogenes to E. faecalis, and from L. monocytogenes and E. faecalis to E. coli. These data indicate that the gene flux observed in nature from gram-positive to gram-negative bacteria can occur by conjugative mobilization. Our results suggest that dissemination of trimethoprim resistance in Listeria spp. and acquisition of other antibiotic resistance determinants in this species can be anticipated.  相似文献   

20.
A single copy of the Streptococcus faecalis transposon Tn917, located in the Bacillus subtilis chromosome, was able to transpose onto the SPO2 cos plasmid pPL1017, which codes for chloramphenicol resistance and contains the bacteriophage phi 105 immunity region. Selection for pPL1017::Tn917 chimeras was performed by SPO2-mediated plasmid transduction of transposon-borne resistance to macrolide-lincosamide-streptogramin B antibiotics (MLSr). The transposition of Tn917 onto plasmid pPL1017 occurred with a frequency of 10(-5) and was dependent on the presence of a subinhibitory dose of erythromycin. Twelve chimeras were subjected to genetic and physical analyses. Two Cams transductants harbored plasmids whose chloramphenicol acetyltransferase genes had been insertionally inactivated by Tn917. Several transpositions in the vicinity of the phi 105 immunity region were detected. However, all of the 300 MLSr, Camr transductants screened were immune to phi 105 infectious activity. One pPL1017::Tn917 chimera, pLK200, was transferred by SPO2 plasmid transduction into the Bacillus amyloliquefaciens prototrophic strain DSM7. Plasmid pLK200 was effective in the mutagenesis of the DSM7 chromosome and yielded auxotrophs at a frequency of 0.5 to 5.3%. Generation of auxotrophs was also dependent on the presence of a subinhibitory dose of erythromycin. Forty-four auxotrophs representing at least nine amino acid requirements were recovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号