首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilizing the induced differentiation of HL-60 promyelocytic leukemia cells as a model of myeloid maturation, we examined the development of the superoxide-generating system, focusing on NADPH oxidase activity, membrane depolarization, and cytochrome b content. NADPH oxidase activity, measured as NADPH-dependent superoxide production, increased with both spontaneous and N,N-dimethylformamide-induced differentiation. Activity in particulate fractions from induced HL-60 cells and human peripheral blood polymorphonuclear leukocytes was proportional to their relative rates of superoxide production, but activity from uninduced cells was surprisingly high: one-third that from induced cells, despite only 7% their rate of superoxide generation. NADPH oxidase activities in phagocytic vesicles from induced HL-60 cells and polymorphonuclear leukocytes were equal, indicating the equivalence of the enzyme system in active portions of their cell membranes. Separation by centrifugal elutriation of the HL-60 cell population into fractions of varying maturity confirmed the relationship of NADPH oxidase activity to advancing differentiation in both dimethylformamide-induced and spontaneously maturing cells. Membrane potential change, an early event related to activation of the oxidase, was followed by 3,3'-dipropylthiodicarbocyanine dye fluorescence. The depolarization response increased dramatically in both magnitude and initial rate of change during differentiation. The cells' cytochrome b content increased 3-fold with induction of differentiation, in proportion to the change in NADPH oxidase activity.  相似文献   

2.
Because adaptation to physiological changes in cellular energy demand is a crucial imperative for life, mitochondrial oxidative phosphorylation is tightly controlled by ATP consumption. Nevertheless, the mechanisms permitting such large variations in ATP synthesis capacity, as well as the consequence on the overall efficiency of oxidative phosphorylation, are not known. By investigating several physiological models in vivo in rats (hyper- and hypothyroidism, polyunsaturated fatty acid deficiency, and chronic ethanol intoxication) we found that the increase in hepatocyte respiration (from 9.8 to 22.7 nmol of O(2)/min/mg dry cells) was tightly correlated with total mitochondrial cytochrome content, expressed both per mg dry cells or per mg mitochondrial protein. Moreover, this increase in total cytochrome content was accompanied by an increase in the respective proportion of cytochrome oxidase; while total cytochrome content increased 2-fold (from 0.341 +/- 0.021 to 0.821 +/- 0.024 nmol/mg protein), cytochrome oxidase increased 10-fold (from 0.020 +/- 0.002 to 0.224 +/- 0.006 nmol/mg protein). This modification was associated with a decrease in the overall efficiency of the respiratory chain. Since cytochrome oxidase is well recognized for slippage between redox reactions and proton pumping, we suggest that this dramatic increase in cytochrome oxidase is responsible for the decrease in the overall efficiency of respiratory chain and, in turn, of ATP synthesis yield, linked to the adaptive increase in oxidative phosphorylation capacity.  相似文献   

3.
In a study of the chronic effects of CCl4 on the respiratory activities of rat liver mitochondria, the content of cytochrome c oxidase increased from 0.077 +/- 0.010 (nmol/mg protein) for normal rats to 0.101 +/- 0.009, and its specific activity increased from Vmax = 345 +/- 24 (e-/s/cytochrome aa3) to 431 +/- 19 in mitochondria of CCl4 treated rats. There was a slight increase in Km for cytochrome c from 5.63 +/- 0.08 microM to 7.79 +/- 0.80. These results would strongly suggest that an appreciable decrease in the steady state concentration of ATP in hepatic cells of CCl4 treated rats brought about a compensatory increase in the overall activity of cytochrome c oxidase. However, when the rate of oxygen uptake by mitochondria was measured in the presence of rotenone and tetramethyl-p-phenylene-diamine with NADH as substrate, the specific activity in CCl4 treated rats was lower than that of normal rats (Vmax = 345 +/- 31 (e-/s/cytochrome aa3), as compared to Vmax = 408 +/- 21) in spite of the increased activity of cytochrome c oxidase. This phenomenon was ascribed to a decrease in the activity of NADH cytochrome b5 reductase in the mitochondrial outer membrane due to CCl4 treatment.  相似文献   

4.
The human HL-60 myeloid leukaemia cell line developed, during maturational changes induced by dimethyl sulphoxide, an enhanced capacity for phorbol myristate acetate- stimulated oxidative activity and acquired a cytochrome b. Titration of the absorbance at 559 nm at potentials of-190 to -370 mV indicated that this cytochrome had a very low potential, differentiating it from mitochondrial and endoplasmic reticulum cytochromes and identifying it as the cytochrome b(-245) that has been recently found in other phagocytic cells. Subcellular fractionation studies of mature HL-60 cells showed that cytochrome b had a dual distribution within the cell. The lighter peak of activity was associated with the plasma membrane markers, adenylate cyclase and receptors for the N- formal-L-methionyl-L-leucyl-L-phenylalanine (f-Met-Leu-Phe) peptide. The denser components localized with the mitochondria but were distinct from mitochondrial cytochromes because whereas the activity of cytochrome c oxidase fell during HL-60 cell maturation, that of this cytochrome b was markedly increased. Concentrations of myeloperoxidase were unrelated to activity of the oxidase system and decreased as the cell matured. The increase in the concentrations of cytochrome b with cellular maturation parallelled the increase in the stimulated nonmitochondrial respiratory activity of these cells. The turnover of the hexose monophosphate shunt of immature cells was increased by the oxidising agents, methylene blue and tert-butylhydroperoxide, indicating that these immature cells have stimulated nonmitochondrial respiratory activity by maturing HL-60 cells is associated with, and is probably dependent upon, the acquisition by these cells of the cytochrome b(-245) oxidase system.  相似文献   

5.
6.
The superoxide (O2-) forming NADPH oxidase complex of resting phagocytes can be activated in a cell-free system by certain anionic amphiphiles, such as sodium dodecyl sulfate (SDS). For O2- production to occur, the participation of both membrane-associated and cytosol-derived components is required. The purpose of this investigation was to isolate and characterize the membrane component of NADPH oxidase. For this purpose, guinea pig macrophage membranes were extracted with 1 M NaCl, solubilized by 40 mM octyl glucoside, and subjected to a purification sequence consisting of absorption with DEAE-Sepharose, affinity chromatography on heparin-agarose, and chromatography on hydroxylapatite. At each purification step, fractions were assayed for their ability to support SDS-elicited, cytosol-dependent O2- production, following incorporation in liposomes of phosphatidylcholine. We found that membrane oxidase activity copurified strictly with cytochrome b559. Peak hydroxylapatite fractions exhibited specific O2(-)-forming activity in the range of 81-115 mumol of O2-/mg protein/min and a specific cytochrome b559 content of 7-14 nmol of cytochrome b559/mg protein. SDS-polyacrylamide gel electrophoresis analysis of the peak oxidase activity fractions, derived by hydroxylapatite chromatography, revealed essentially two bands that were identified as the beta (54-60 kDa) and alpha (21/22 kDa) subunits of guinea pig cytochrome b559. The relation of the two polypeptides to cytochrome b559 was established by correlation with a spectral signal characteristic of cytochrome b559, immunoblotting with antibodies against defined human cytochrome b559 beta and alpha chain peptides, cross-linking studies, and deglycosylation experiments. Hydroxylapatite-purified membrane oxidase preparations did not contain FAD and were free of cytochrome c reductase activity. Purified membrane oxidase preparations were also capable of cooperating with purified cytosolic components in SDS-elicited cell-free O2- production. We conclude that the membrane-associated component of the O2- generating NADPH oxidase is identical to cytochrome b559.  相似文献   

7.
Studies are reported on the interrelationships in liver mitochondria of copper status, cytochrome oxidase activity, adenine nucleotide binding capacity and phospholipid synthesis. Direct exposure of mitochondria to cyanide or diethyldithiocarbamate depressed cytochrome oxidase activity; ADP-binding and phospholipid synthesis. Fractionation of mitochondria to increase the specific activity of cytochrome oxidase about 10-fold did not increase the affinity to bind ADP. Ageing of mitochondria or dialysis of mitochondria or mitochondrial membrane preparations against water or diethyldithiocarbamate at 0--2 degrees for 18 h did not decrease cytochrome oxidase activity or copper content of reisolated and resuspended mitochondria or mitochondrial membrane preparations, but considerably reduced the affinity to bind ADP. The respiratory inhibitors, fluoride and azide, at concentrations inhibitory to cytochrome oxidase did not reduce ADP-binding or phospholipid synthesis. Atractyloside did not inhibit cytochrome oxidase activity but did inhibit ADP-binding and phospholipid synthesis. Pre-incubation of mitochondrial membrane preparations with Cu++ increased the copper content and ADP-binding affinity. The results indicate that cytochrome oxidase is not the ADP-binding site of the mitochondrial membrane system and that reduced cytochrome oxidase activity per se does not depress binding affinity. Copper appears to be a component of the adenine nucleotide binding sites of mitochondrial membranes because the copper-complexing agents, cyanide and diethyldithiocarbamate, depressed ADP-binding, while increased mitochondrial membrane copper content increased ADP-binding.  相似文献   

8.
Abstract The respiratory activity of cysts of Azotobacter vinelandii has been compared with that of vegetative cells. Whole cysts had a much reduced respiratory activity which was less sensitive to KCN. Substrate oxidation rates by membrane preparations from cysts were reduced approximately 10-fold and sensitivity to KCN was decreased by a similar factor. Difference spectra of cyst membranes revealed changes in cytochrome content. Cytochrome oxidase d was apparently absent, cytochrome a 1 levels were approximately halved whilst those of cytochrome oxidase o were almost doubled. Cytochromes of the b and c -type were present in similar amounts to those in vegetative cells.  相似文献   

9.
The activity of cytochrome oxidase (an inner mitochondrial membrane marker) in mouse mammary gland homogenates was found to increase five- to sixfold from late pregnancy to day 8 of lactation, while that of monoamine oxidase (an outer membrane marker) increased only about 25%. The specific activity of cytochrome oxidase in the isolated mitochondria decreased slightly over the same period while the specific activity of monoamine oxidase decreased fivefold. This reflects the fact that both cytochrome oxidase and mitochondrial protein are increasing at a much greater rate than is monoamine oxidase activity. Mixing experiments preclude the possibility that the release or removal of an inhibitor or stimulator produces the changes in enzymatic activity. The cytochrome oxidase to monoamine oxidase ratio was followed throughout the pregnancy-lactation cycle in total mammary homogenates, isolated mammary parenchymal cells, and isolated mammary mitochondria. In each preparation the pattern was the same with little change in the ratio until late pregnancy; and then a three- to fourfold increase occurred and the values reached a maximum by day 8 of lactation. These experiments were interpreted as demonstrating that the observed enzymatic changes are reflective of alterations in the mitochondria of the mammary parenchymal cell population. Electron micrographs of mid-pregnant and mid-lactating mammary parenchymal cells in situ were prepared, and distinct changes in the mitochondrial morphology noted. The most significant and obvious change is the large increase in the number of inner membrane cristae and an increase in matrix density in the lactating gland cell. Therefore, both enzymatic and morphological studies support the concept of an expansion of the mitochondrial inner membrane during presecretory differentiation in the mouse mammary parenchymal cell.  相似文献   

10.
Purification of cytochrome b-245 from human neutrophils.   总被引:5,自引:0,他引:5       下载免费PDF全文
The low potential cytochrome b (b-245) of the microbicidal oxidase of phagocytic cells has been purified from neutrophils from patients with chronic myeloid leukaemia. Cells were homogenized in the presence of proteinase inhibitors and centrifuged to remove the cytoplasm. The pellets containing membranes, granules and other organelles (15 mg/ml) were then washed with buffered sodium cholate (5 mg/ml). Residual pellets were subsequently solubilized with the non-ionic detergent Triton N 101 (10 mg/ml) which extracted about 60% of the cytochrome b. About 10% of the cytochrome b was of mitochondrial origin which was removed on a column of n-amino-octyl-Sepharose that did not adsorb cytochrome b-245. Cytochrome b-245 was chromatographed on a column of heparin-agarose and eluted with NaCl to give a peak specific content of 11-16 nmol of cytochrome b-245/mg of protein, representing a 140-200-fold purification with a recovery of 15%. This technique results in the purification of approx. 100-150 nmol of highly purified cytochrome b-245 from (3-5) X 10(11) cells within 4 days. The most purified material gave a broad band with an apparent Mr of between 68 000 and 78 000 on sodium dodecyl sulphate/polyacrylamide gel electrophoresis, but gel filtration indicated an aggregated form of the protein in Triton N101 . Purified protein (14 nmol of haem/mg of protein) did not contain FAD or FMN and had no NADPH-dependent O2--generating activity.  相似文献   

11.
A single intraperitoneal injection of dimethyl sulfoxide (275 mg/100 g body wt.) to rats stimulated cytochrome oxidase activity in liver mitochondria 2-5-fold. The enzyme activity remained at this level for as long as 5 days post-injection. There was however only 10.5% increase in the content of cytochromes a and a3 (as determined spectrophotometrically) in the same period in response to DMSO injection. The addition of either DMSO or dimethyl sulfate (a metabolite of DMSO) to isolated liver mitochondria also caused 2-3-fold increase in cytochrome oxidase activity. The results indicate that enhancement in cytochrome oxidase activity in liver mitochondria after administration of DMSO to rats is on account of activation of cytochrome oxidase caused by structural alterations in mitochondrial membranes rather than de novo synthesis of cytochrome oxidase.  相似文献   

12.
Cytochrome b558 of pig blood neutrophils was purified from the membranes of resting cells to examine its ability to reconstitute superoxide (O2-)-forming NADPH oxidase activity in a cell-free assay system containing cytosol and fatty acid. The membrane-associated cytochrome b558 was solubilized with a detergent, n-heptyl beta-thioglucoside, and purified by DEAE-Sepharose, heparin-Sepharose, and Mono Q column chromatography. The final preparation of cytochrome containing 11.5 nmol of protoheme/mg of protein gave bands of the large and small subunits on immunoblotted gel. The cell-free system with the purified cytochrome alone as a membrane component showed little O2(-)-generating activity in the absence of exogenous FAD. However, the system showed high O2(-)-generating activity of 31.8 mol/s/mol of cytochrome b558 (52.5% of the original O2(-)-generating activity of the solubilized membranes) in the presence of a nitro blue tetrazolium (NBT) reductase fraction that was separated from the cytochrome b fraction by heparin-Sepharose chromatography. Heat treatment of the NBT reductase fraction resulted in loss of the O2(-)-generating activity in the reconstituted system. The O2(-)-forming activity of the reconstituted system was markedly decreased by removal of FAD from the NBT reductase fraction and was restored by readdition of FAD to the FAD-depleted reductase. The reconstituted system containing purified cytochrome b558 plus the NBT reductase showed approximately 100 times higher O2(-)-generating activity than a system containing rabbit liver NADPH-cytochrome P-450 reductase instead. These results suggest that both the FAD-dependent NBT reductase and cytochrome b558 are required as membrane redox components for O2(-)-forming NADPH oxidase activity. The present data are discussed in comparison with previously reported results on reconstituted systems containing added free FAD.  相似文献   

13.
From 1 to 3 h after the onset of cerebellar granule cells (CGC) apoptosis in a low-K+(5 mm KCl) medium there was a large decay of NADH and a 2.5-fold increase of the rate of reactive oxygen species (ROS) production (measured using CGC loaded with dichlorodihydrofluorescein). During the same time period, the ascorbate-dependent NADH oxidase activity, which accounted for more than 90% of both total NADH oxidase activity and NADH-dependent *O2- production of CGC lysates, increased 2.5- to threefold. The stimulation of the ascorbate-dependent NADH oxidase activity by oxidized cytochrome c, 2.5-fold at saturation with a K(0.5) of 4-5 microm cytochrome c, can at least partially explain this activation. The plasma membrane ascorbate-dependent NADH oxidase activity accounted for more than 70% of the total activity (both in terms of NADH oxidase and *O2- release) of CGC lysates. 4-Hydroxyquinazoline (4-HQ), which was found to block this apoptotic process, prevented the increase of ROS production. 4-HQ protection against cell viability loss and DNA fragmentation correlated with the inhibition by 4-HQ of the ascorbate-dependent NADH oxidase activity of CGC lysates, showing the same K(0.5)-value (4-5 mm 4-HQ). The efficient blockade of CGC apoptosis by addition of superoxide dismutase to the medium further supports the neurotoxic role of *O2- overproduction by the plasma membrane ascorbate-dependent NADH oxidase.  相似文献   

14.
Photoautotrophically grown cyanobacterium Nostoc sp. strain Mac (PCC 8009) released up to about 10 nmol of a c-type cytochrome per ml packed cells after treatment with EDTA under conditions that left the plasma membrane absolutely intact as judged from the absence of cytosolic proteins in the supernatant. Spectra of the ascorbate reduced cytochrome revealed peaks at 553, 522 and 416 nm. The protein was purified to an A-553/A-275 ratio of 0.8. Midpoint potential (at pH 7), isoelectric point and apparent molecular weight of the cytochrome were +0.35 V, 8.6, and around 10,500, respectively. The cytochrome proved to be an excellent electron donor to the aa3-type cytochrome oxidase in both plasma and thylakoid membranes isolated and purified from Nostoc Mac. Chemoheterotrophic growth of the cells increased the level of periplasmic cytochrome c up to 10-fold and cytochrome oxidase activity of plasma membranes up to 90-fold. The periplasmic cytochrome also transferred electrons to photosystem I in illuminated thylakoid membranes. We conclude that cyanobacteria contain a periplasmic c-type cytochrome presumably identical to so-called cytochrome c6 or c-553 which has long been known as a photosynthetic (i.e. thylakoid-associated) redox protein in these organisms, and which is capable of donating electrons (from the periplasmic space) to the cytochrome oxidase in the plasma membrane and (from the thylakoid lumen) to both P700 and cytochrome oxidase in the thylakoid membrane.  相似文献   

15.
16.
Pyrene fluorescence quenching by plastoquinone was used to estimate the rate of plastoquinone lateral diffusion in soybean phosphatidylcholine proteoliposomes containing the following integral membrane proteins: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc1, and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 · 10-7 cm2 s-1 in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc1, and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration.  相似文献   

17.
Cytoplasmic membranes of Bacillus subtilis, grown in complex medium containing glucose, were fractionated into three membrane subfractions [light band (1.155 - 1.158 g/cm3); medium band (1.181 - 1.183 g/cm3); heavy band (1.21 - 1.25 g/cm3)] by sucrose density gradient centrifugation. Among these subfractions, the light and medium bands consisted mainly of membranes but the heavy band consisted of an irregular arrangement or aggregate of small globular protein components of 5 - 8 nm in diameter. We named this H-protein. H-protein formed trilamellar unit membrane structure when combined with lipid. In pulse-labeling and pulse-chase experiments with radioactive leucine, it was found that H-protein consisted of the newest membrane protein synthesized in the cells and the label incorporated into H-protein was shifted into light and medium band of the membranes during the chase. Cytochromes were not found in H-protein. However, when H-protein was incubated with haem alpha and protohaem, these compounds were incorporated into the apoproteins of the cytochromes present in H-protein and form cytochromes a and b. Cytochromes were also formed in H-protein which were isolated from the cells grown in the presence of haemin (haemin-grown H protein). Succinate dehydrogenase activity was increased about 4-fold by combining H-protein or haemin-grown H protein with lipid. H-protein had no cytochrome oxidase activity; however, haemin-grown H protein was found to have some of the activity and this was increased about 4-fold by combining the protein with lipid. Haemin-grown H protein was also found to form succinate: cytochrome c oxidoreductase when combined with lipid and vitamin K2. On the other hand, succinate oxidase was required for the addition of lipid, vitamin K2 and cytochrome c. NADH oxidase was also found in haemin-grown H protein and was activated about 9-fold in constituted reaction systems. Vesicles formed by haemin-grown H protein and lipid, could accumulate alanine and proline by addition of NADH or reduced phenazine methosulfate. Alanine and proline was also accumulated into the vesicles when transport energy was supplied as a membrane potential introduced by K+-diffusion via valinomycin. These results would indicate that H-protein contains the apoprotein of cytochromes, and a carrier involved in the active transport of alanine and proline.  相似文献   

18.
Brown adipose tissue of developing hamster was characterized by western blotting, enzyme activity measurements and immunoelectron microscopy. During the first postnatal week the tissue contained significant amounts of differentiating mitochondria and comparable quantities of active cytochrome oxidase and ATP synthase. The uncoupling protein appeared on the 7/8th day and its specific content increased 80-times between day 8 and day 17. In parallel, the specific content and activity of cytochrome oxidase increased 3-times but ATP synthase decreased 2-times. The total content of uncoupling protein and of cytochrome oxidase in interscapular brown adipose tissue increased 360- and 11-times, respectively. Analysis of isolated mitochondria showed that the observed differences result mainly from changes of the enzymic equipment of the mitochondrial membrane. During the same interval, propylthiouracil-insensitive "type II' thyroxine 5'-deiodinase activity in brown adipose tissue increased 10-times. It was concluded that the thermogenic function of the hamster brown adipose tissue develops after the first postnatal week due to highly differentiated synthesis of mitochondrial proteins leading to replacement of preexisting, uncoupling protein-lacking nonthermogenic mitochondria by thermogenic ones, similarly as shown in brown adipose tissue of the embryonic mouse and rat (Houst?k, J., et al. (1988) Biochim. Biophys. Acta 935, 19-25).  相似文献   

19.
Addition of oxygen to a culture of anaerobically growing Staphylococcus aureus results in the formation of a membrane-bound, functional electron transport system. With the shift to aerobic growth, there is at least a 15-fold increase in cytochrome a and at least a 55-fold increase in cytochrome oxidase o. At the completion of the shift to aerobic growth, the cytochrome levels equal those found in bacteria grown with aeration throughout the entire growth cycle. Cytochromes b(1) and o are formed first. Their synthesis slows when cytochrome a becomes detectable. Concentrations of cytochromes b(1) and sometimes cytochrome a increase late in the adaptive period. Concomitant with this is a decrease in the oxygen tension at which the rate of oxygen utilization becomes dependent on the oxygen concentration. During the shift to aerobic growth, the protoheme content increases ninefold, and all the protoheme can be accounted for in enzymatically reducible cytochrome b(1) and cytochrome oxidase o. Protoheme, but not a functional cytochrome system, is synthesized by anaerobically growing S. aureus. Heme a appears only after a period of aerobic growth. During the shift to aerobic growth, there is a 1.6-fold increase in the vitamin K(2) content, with an alteration in the ratios of the 35 and 45 carbon side chain isoprenologues. A twofold increase in phosphatidyl glycerol and a 1.6-fold increase in cardiolipin occur with the shift to aerobic growth. Lysyl-phosphtidyl glycerol remains essentially constant in this period. Concentrations of mono- and diglucosyl diglycerides increase coordinately 1.3-fold during the shift to aerobic growth at a 2.5 to 1 m ratio.  相似文献   

20.
The NADPH-dependent O-.2-generating oxidase from human neutrophils   总被引:5,自引:0,他引:5  
A subcellular particulate fraction from normal neutrophils that was enriched in NADPH-dependent O-.2-generating activity (Gabig, T. G., Schervish, E. W., and Santinga, J. T. (1982) J. Biol. Chem. 257, 4114-4119) has been further characterized. This preparation contained 0.25 +/- 0.02 nmol of flavin adenine dinucleotide/mg of protein and 0.28 +/- 0.01 nmol of cytochrome b/mg of protein. Measurable amounts of riboflavin or flavin mononucleotide were not present. The flavoprotein was completely resolved from the cytochrome b by selective bile salt extraction of the particulate oxidase fraction. The identical subcellular particulate fraction was studied in the neutrophils from two male patients with chronic granulomatous disease. The neutrophil oxidase fraction from one of the chronic granulomatous disease patients had a cytochrome b component that was spectrally abnormal, but a normal content of flavin adenine dinucleotide. The fraction from this patient's neutrophils corresponding to the resolved flavoprotein from normal cells had fluorescence excitation and emission spectra that were identical to the normal flavoprotein. The neutrophil oxidase fraction from the second chronic granulomatous disease patient had a quantitatively and spectrally normal cytochrome b but less than 8% of the normal amount of flavin adenine dinucleotide. The fraction from the latter patient's neutrophils corresponding to the resolved flavoprotein from normal cells had no detectable flavoprotein by fluorescence excitation and emission spectroscopy. It is postulated that these two patients represent distinct mutants in two separate components of the neutrophil NADPH-dependent O-.2-generating oxidase system, flavoprotein and cytochrome b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号