首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pro-metastasis function of TGFbeta mediated by the Smad pathway   总被引:2,自引:0,他引:2  
The transforming growth factor beta (TGFbeta) signaling pathway plays a vital role in the development and homeostasis of normal tissues. Abnormal function of this pathway contributes to the initiation and progression of cancer. Smad proteins are key signal transducers of the TGFbeta pathway and are essential for the growth suppression function of TGFbeta. Smads are bona fide tumor suppressors whose mutation, deletion, and silencing are associated with many types of human cancer. However, the involvement and functional mechanism of Smad proteins in cancer metastasis are poorly defined. Recent studies using genetically modified cancer cells and mouse tumor models have provided concrete evidence for a Smad-dependent mechanism for metastasis promotion by TGFbeta. Understanding the dual roles of Smad proteins in tumor initiation and progression has important implications for cancer therapeutics.  相似文献   

2.
3.
Previously, we demonstrated the pivotal role of the vitamin D receptor (VDR) in mediating the butyrate-induced differentiation in colon cancer cells. Smad 3, a downstream component of transforming growth factor-beta (TGFbeta) signaling, has been shown to act as a coactivator of VDR and to possibly regulate the vitamin D signaling pathway. In this study, we demonstrate a distinct impact of the TGFbeta/Smad 3-signaling pathway in the butyrate-mediated VDR expression and induction of differentiation. Butyrate treatment resulted in a significant induction of the phosphorylation level of Smad 3, while the combination of butyrate and a specific TGFbeta1-antibody or a TGFbeta-receptor inhibitor considerably diminished the butyrate-induced upregulation of VDR expression. Using a specific inhibitor, we were also able to demonstrate an involvement of the p38 MAPK in the increase of Smad 3 phosphorylation following butyrate treatment, thus opening the view to further elucidate possible mechanisms mediating the upregulation of VDR expression following butyrate treatment in colon cancer cells.  相似文献   

4.
5.
TGF-beta signalling through the Smad pathway   总被引:2,自引:0,他引:2  
  相似文献   

6.
7.
Smad2 is an important factor in TGFbeta/Smad2 signal transduction pathway with ability for signal propagation, it could translocate from cytoplasm to nucleus after the TGFbeta receptor-mediated phosphorylation. 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), a natural agonist of the peroxisome proliferator-activated receptor gamma (PPARgamma), is found recently to be able to function in the regulation of Smad2 activity. However, no quantification data have been yet reported, and it still keeps suspenseful whether or not 15d-PGJ2 could regulate Smad2 activity by depending on PPARgamma through PPAR gamma/TGFbeta/ Smad2 pathway. In this work, by analyzing the EGFP-Smad2 location in CHO cells according to the Nucleus Trafficking Analysis Module based on IN Cell Analyzer 1000 platform, TGFbeta stimulated EGFP-Smad2 translocation regulated by 15d-PGJ2 was quantitatively investigated. The results showed that TGFbeta could induce EGFP-Smad2 translocation from cytoplasm to nucleus by EC50 of 8.83 pM, and 15d-PGJ2 could impede the TGFbeta-stimulated Smad2 translocation by IC50 of 0.68 microM. Moreover, GW9662, a PPARgamma antagonist, could attenuate such a 15d-PGJ2 inhibitory activity by almost one order of magnitude. This result thereby implies that 15d-PGJ2 might inhibit Smad2 translocation through PPARgamma/TGFbeta/Smad2 pathway. Further investigation discovered that different from the case for 15d-PGJ2, rosiglitazone, another PPARgamma agonist, could enhance Smad2 translocation to nucleus, suggesting that rosiglitazone and 15d-PGJ(2) might take different modes in the activation of PPARgamma within the signaling pathway.  相似文献   

8.
Galectin-9 is a β-galactoside-binding lectin expressed in various tissues. It binds various glycoconjugates and modulates a variety of biological functions in various cell types. Although galectin-9 is expressed in bone, its function in human osteoblasts remains unclear. We demonstrate that galectin-9 induces osteoblast differentiation through the CD44/Smad signaling pathway in the absence of bone morphogenetic proteins (BMPs). Galectin-9 increases alkaline phosphatase activities in human osteoblasts and induces the phosphorylation of Smad1/5/8 and translocation of Smad4 to the nucleus in the absence of BMPs. Galectin-9 also induces binding of Smad4 to the Id1 promoter and increases its activity. Anti-CD44 antibody inhibits Smad1/5/8 phosphorylation by galectin-9. Galectin-9 binds to CD44 and induces the formation of a CD44/BMP receptor complex. Because Smad1 is phosphorylated by BMP receptors, we propose that formation of the CD44/BMP receptor complex induced by galectin-9 may provide a trigger for the activation of Smads.  相似文献   

9.
Chen CR  Kang Y  Siegel PM  Massagué J 《Cell》2002,110(1):19-32
  相似文献   

10.
Genomic analysis of metabolic pathway gene expression in mice   总被引:3,自引:0,他引:3  

Background  

A segregating population of (C57BL/6J × DBA/2J)F2 intercross mice was studied for obesity-related traits and for global gene expression in liver. Quantitative trait locus analyses were applied to the subcutaneous fat-mass trait and all gene-expression data. These data were then used to identify gene sets that are differentially perturbed in lean and obese mice.  相似文献   

11.
12.
鼻咽癌患者的Smad2/4基因突变分析   总被引:1,自引:0,他引:1  
利用PCR—SSCP银染技术对30例鼻咽癌患的Smad2/4基因的所有外显子进行突变分析,以探讨Smad2/4基因与鼻咽癌发病的可能相互关系。结果在所有病例的所有外显子上没有发现任何类型的突变。Smad2/4基因可能不是鼻咽癌的易感基因,TGF-β/Smad2/4信号通路可能不参与鼻咽癌的发病。  相似文献   

13.
14.
15.
16.
In addition to important roles in the regulation of cell growth and cell restitution, both pro- and anti-inflammatory effects have been ascribed to TGFbeta in intestinal epithelial cells. However, the mechanisms involved in TGFbeta-dependent anti-inflammatory activities remain to be determined. In the rat intestinal epithelial cell line IEC-6, TGFbeta attenuated the glucocorticoid-dependent increases in mRNA levels of the acute phase protein gene haptoglobin, and of C/EBP isoforms beta and delta. Supershift assays demonstrated a TGFbeta-mediated decrease in the binding of C/EBP isoforms beta and delta to the haptoA and haptoC C/EBP DNA-binding sites from the haptoglobin promoter. Mutations of both HaptoA and HaptoC sites abolished the glucocorticoid-dependent activation and the TGFbeta-mediated attenuation of the haptoglobin promoter, as assessed by transient transfection assays. TGFbeta induced p42/p44 MAP kinase activities. Treatment with the MEK 1/2 inhibitor PD 98059 abolished TGFbeta attenuation. These results suggest that C/EBP isoforms are involved both in the glucocorticoid-dependent induction and in the TGFbeta-mediated attenuation of haptoglobin expression. Furthermore, p42/p44 MAP kinases may function in a TGFbeta-dependent signaling pathway leading to attenuation of haptoglobin expression.  相似文献   

17.
In B cells, two classes of protein tyrosine kinases (PTKs), the Src family of PTKs (Lyn, Fyn, Lck, and Blk) and non-Src family of PTKs (Syk), are known to be involved in signal transduction induced by the stimulation of the B-cell antigen receptor (BCR). Previous studies using Lyn-negative chicken B-cell clones revealed that Lyn is necessary for transduction of signals through the BCR. The kinase activity of the Src family of PTKs is negatively regulated by phosphorylation at the C-terminal tyrosine residue, and the PTK Csk has been demonstrated to phosphorylate this C-terminal residue of the Src family of PTKs. To investigate the role of Csk in BCR signaling, Csk-negative chicken B-cell clones were generated. In these Csk-negative cells, Lyn became constitutively active and highly phosphorylated at the autophosphorylation site, indicating that Csk is necessary to sustain Lyn in an inactive state. Since the C-terminal tyrosine phosphorylation of Lyn is barely detectable in the unstimulated, wild-type B cells, our data suggest that the activities of Csk and a certain protein tyrosine phosphatase(s) are balanced to maintain Lyn at a hypophosphorylated and inactive state. Moreover, we show that the kinase activity of Syk was also constitutively activated in Csk-negative cells. The degree of activation of both the Lyn and Syk kinases in Csk-negative cells was comparable to that observed in wild-type cells after BCR stimulation. However, BCR stimulation was still necessary in Csk-negative cells to elicit tyrosine phosphorylation of cellular proteins, as well as calcium mobilization and inositol 1,4,5-trisphosphate generation. These results suggest that not only activation of the Lyn and Syk kinases but also additional signals induced by the cross-linking of the BCR are required for full transduction of BCR signaling.  相似文献   

18.
Cho IJ  Kim SH  Kim SG 《Cytokine》2006,35(5-6):284-294
Transforming growth factor-beta1 (TGFbeta1) induces plasminogen activator inhibitor-1 (PAI-1) as a major target protein. PAI-1 is associated with fibrosis, thrombosis, and metabolic disorders. TGFbeta1 induces PAI-1 via phosphorylation and nuclear translocation of Smads. Oltipraz inhibits TGFbeta1 expression and also regenerates cirrhotic liver. Nevertheless, whether oltipraz modulates TGFbeta1-mediated cell signaling is unclear. First, this study examined the effect of oltipraz on PAI-1 expression in cirrhotic rat liver. The cells immunochemically stained with anti-PAI-1 antibody accumulated around and within fibrous nodules in cirrhotic liver, which was notably decreased by oltipraz treatment. Next, whether oltipraz inhibits TGFbeta1-mediated Smads activation or Smad-mediated PAI-1 induction was determined in L929 fibroblasts. Oltipraz inhibited the ability of TGFbeta1 to induce PAI-1, as indicated by repression of TGFbeta1-mediated luciferase induction from the plasmid comprising the human PAI-1 promoter and of TGFbeta1-induced Smad-DNA-binding activity. TGFbeta1 induced nuclear transport of receptor-regulated Smad 2 and Smad 3, of which oltipraz selectively inhibited the transport and phosphorylation of Smad 3, thereby reducing formation of Smad 3/4 complex in the nucleus. In summary, oltipraz inhibits PAI-1 induction via a decrease in the formation of Smad 3/4 complex due to selective interruption of Smad 3 activation, indicating that oltipraz regulates the cellular responses downstream of ligand-activated TGFbeta1 receptor.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号