首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
p53是细胞内最重要的抑癌蛋白质之一;细胞对p53分子功能的调控主要通过一系列翻译后修饰(PTMs)完成。其中,乙酰化修饰既可在总体水平调控p53的转录活性,又可位点特异性地调控p53依赖的转录选择性,进而精确控制p53在细胞周期阻滞、凋亡、衰老、自噬和代谢等关键生物学过程中的作用。本综述以p53乙酰化修饰研究的时间脉络为轴,首先总结了发生在p53各结构域内乙酰化修饰的建立机制,包括催化p53位点特异性乙酰化发生的乙酰基转移酶,以及各位点乙酰化修饰对p53分子功能调节的机制。其次,本综述总结了参与去除p53乙酰化修饰的关键去乙酰基酶家族,以及这些因子参与调控p53分子功能的生物学意义。同时,本文综述了能够特异性读取p53乙酰化修饰状态的识别蛋白质,以及这些识别蛋白质与p53互作,进而协同调控下游靶基因转录的分子调控网络。此外,本文概述了p53乙酰化修饰与其它类型翻译后修饰之间的“交谈”,以及这些修饰之间通过时空特异互作方式影响p53功能的分子机制。最后,本文基于p53乙酰化修饰,对肿瘤分子医学的研究前景进行讨论与展望。  相似文献   

3.
4.
The tumor suppressor function of the wild-type p53 protein is transdominantly inhibited by tumor-derived mutant p53 proteins. Such transdominant inhibition limits the prospects for gene therapy approaches that aim to introduce wild-type p53 into cancer cells. The molecular mechanism for transdominant inhibition involves sequestration of wild-type p53 subunits into inactive wild-type/mutant hetero-tetramers. Thus, p53 proteins, whose oligomerization specificity is altered so they cannot interact with tumor-derived mutant p53, would escape transdominant inhibition. Aided by the known three-dimensional structure of the p53 tetramerization domain and by trial and error we designed a novel domain with seven amino acid substitutions in the hydrophobic core. A full-length p53 protein bearing this novel domain formed homo-tetramers and had tumor suppressor function, but did not hetero-oligomerize with tumor-derived mutant p53 and resisted transdominant inhibition. Thus, hydrophobic core residues influence the oligomerization specificity of the p53 tetramerization domain.  相似文献   

5.
Dimerization of the p53 oligomerization domain involves coupled folding and binding of monomers. To examine the dimerization, we have performed molecular dynamics (MD) simulations of dimer folding from the rate-limiting transition state ensemble (TSE). Among 799 putative transition state structures that were selected from a large ensemble of high-temperature unfolding trajectories, 129 were identified as members of the TSE via calculation of a 50% transmission coefficient from at least 20 room-temperature simulations. This study is the first to examine the refolding of a protein dimer using MD simulations in explicit water, revealing a folding nucleus for dimerization. Our atomistic simulations are consistent with experiment and offer insight that was previously unobtainable.  相似文献   

6.
韩贤贤 《生命的化学》2006,26(6):518-521
ARF蛋白是INK4a基因位点编码产物之一,是一种重要的肿瘤抑制因子。ARF可结合原癌蛋白Mdm2,稳定p53,将细胞周期阻断在G1期和G2/M转换期,或诱导细胞凋亡。有关ARF的p53依赖性作用已有较多报道。该文主要以ARF对E2F1、DP1、E2F1/DP1、NPM/B23和c-Myc等的调控为例,对ARF的非p53调节通路做一综述。  相似文献   

7.
Poly(ADP-ribosyl)ation of mutant and wild-type p53 was studied in transformed and nontransformed rat cell lines constitutively expressing the temperature-sensitive p53135val. It was found that in both cell types at 37.5°C, where overexpressed p53 exhibits mutant conformation and cytoplasmic localization, a considerable part of the protein was poly(ADP-ribosyl)ated. Using densitometric scanning, the molecular mass of the modified protein was estimated as 64 kD. Immunofluorescence studies with affinity purified anti-poly(ADP-ribose) transferase (pADPRT) antibodies revealed that, contrary to predictions, the active enzyme was located in the cytoplasm, while in nuclei chromatin was depleted of pADPRT. A distinct intracellular localization and action of pADPRT was found in the cell lines cultivated at 37.5°C, where p53 adopts wild-type form. Despite nuclear coexistence of both proteins no significant modification of p53 was found. Since the strikingly shared compartmentalization of p53 and pADPRT was indicative of possible complex formation between the two proteins, reciprocal immunoprecipitation and immunoblotting were performed with anti-p53 and anti-pADPRT antibodies. A poly(ADP-ribosyl)ated protein of 116 kD constantly precipitated at stringent conditions was identified as the automodified enzyme. It is concluded that mutant cytoplasmic p53 is tighly complexed to pADPRT and becomes modified. At 32.5°C binding to DNA of p53 or its temperature-dependent conformational alteration might prevent an analogous modification of the tumor suppressor protein. © 1996 Wiley-Liss, Inc.  相似文献   

8.
肿瘤抑制因子p53被称为"分子警察",它在维持细胞正常生长及抑制恶性增殖过程中起重要作用。p53的表达水平受多种因素影响,其中转录水平的调控是基因发挥功能的一个重要步骤。因此,针对调控p53蛋白的转录因子这一环节阐明p53发挥功能的分子机理,有望为肿瘤治疗、预防和新药研发提供新的靶标。本文着重对调控p53蛋白的转录因子进行综述。  相似文献   

9.
We have developed a novel computational alanine scanning approach that involves analysis of ensemble unfolding kinetics at high temperature to identify residues that are critical for the stability of a given protein. This approach has been applied to dimerization of the oligomerization domain (residues 326-355) of tumor suppressor p53. As validated by experimental results, our approach has reasonable success in identifying deleterious mutations, including mutations that have been linked to cancer. We discuss a method for determining the effect of mutations on the location of the dimerization transition state.  相似文献   

10.
Malignant melanoma has poor prognosis because of its high metastatic potential and resistance to chemotherapy. A possible approach to more effective therapy is induction of p53-dependent apoptosis. This approach is promising, since the wild-type p53 is expressed in most melanomas. An attempt was made to estimate the functional activity of p53 in several malignant melanoma cell lines. Most lines were characterized by a high protein level and nuclear localization of p53. All cell lines expressing the wild-type p53 showed stabilization of p53, its translocation into the nucleus, and activation of several target genes in response to DNA-damaging agents, suggesting that p53 was functionally active. A high-molecular-weight protein localized in the cytoplasm and mimicking a p53 epitope was found in several cell lines. It was shown that the DO-1 epitope is not derived from p53, ruling out cytoplasmic retention of p53 in melanoma cell lines. A mechanism of camptothecin-induced stabilization of p53 by decreasing the level of the HDM2 mRNA was described for melanoma cells but not for normal melanocytes, suggesting a differential effect of camptothecin on tumor-derived and primary cells.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 3, 2005, pp. 445–456.Original Russian Text Copyright © 2005 by Razorenova, Agapova, Chumakov.  相似文献   

11.
12.
肿瘤抑制因子p53功能及其抗病毒作用研究进展   总被引:1,自引:0,他引:1  
肿瘤抑制因子p53 作为基因组的守护者,能通过细胞周期调控和促进细胞凋亡而阻止癌细胞及机体肿瘤的发生,p53还能参与DNA损伤修复、调节机体代谢及调节繁殖生育等功能。除此以外,近年来研究发现,p53能通过促进病毒感染的细胞凋亡而起到抗病毒作用以及p53受IFN的调控和p53作为转录调控因子还能直接转录激活IRF9、IRF5、ISG15和TLR3等抗病毒基因,从而确定了p53在抗病毒反应中起到重要作用。这表明p53可能参与先天性免疫、获得性免疫及炎症反应而起到抗病毒的作用。  相似文献   

13.
Yuan L  Tian C  Wang H  Song S  Li D  Xing G  Yin Y  He F  Zhang L 《EMBO reports》2012,13(4):363-370
The KRAB-type zinc-finger protein Apak was recently identified as a negative regulator of p53-mediated apoptosis. However, the mechanism of this selective regulation is not fully understood. Here, we show that Apak recognizes the TCTTN2−30TTGT consensus sequence through its zinc-fingers. This sequence is specifically found in intron 1 of the proapoptotic p53 target gene p53AIP1 and largely overlaps with the p53-binding sequence. Apak competes with p53 for binding to this site to inhibit p53AIP1 expression. Upon DNA damage, Apak dissociates from the DNA, which abolishes its inhibitory effect on p53-mediated apoptosis.  相似文献   

14.
p53 was discovered 30 years ago. Extensive studies have been done on p53 since then, which makes p53 one of the most extensively studied genes. p53 has long been recognized as a key tumor suppressor. Cell cycle arrest, apoptosis and senescence have been traditionally recognized as the main functions of p53 in tumor suppression. Recently, some novel functions of p53 have been identified, including the regulation of energy metabolism, antioxidant defense, and microRNA expression and maturation, which all contribute to the role of p53 in tumor suppression. Furthermore, the contribution of p53 to normal biologic processes (e.g. reproduction and aging) and some other aspects of diseases (e.g. neurodegenerative diseases) is only now being appreciated. Here we will review recent advances in the study of some new functions of p53.  相似文献   

15.
16.
p53 mutations, occurring in two-thirds of all human cancers, confer a gain of function phenotype, including the ability to form metastasis, the determining feature in the prognosis of most human cancer. This effect seems mediated at least partially by its ability to physically interact with p63, thus affecting a cell invasion pathway, and accordingly, p63 is deregulated in human cancers. In addition, p63, as an 'epithelial organizer', directly impinges on epidermal mesenchimal transition, stemness, senescence, cell death and cell cycle arrest, all determinant in cancer, and thus p63 affects chemosensitivity and chemoresistance. This demonstrates an important role for p63 in cancer development and its progression, and the aim of this review is to set this new evidence that links p63 to metastasis within the context of the long conserved other functions of p63.  相似文献   

17.
p53 is a key regulator of cell growth and death by controlling cell cycle progression and apoptosis under conditions of stress such as DNA damage or oncogenic stimulation. As these processes are critical for cell function and inhibition of tumor development, p53 regulatory pathways are strictly monitored in cells. Recently, it was recognized that nucleolar proteins, including nucleophosmin/B23, ribosomal protein L11, and alternate reading frame (ARF), form the nucleolus-ARF-murine double minute 2 (MDM2) axis in p53 regulatory pathways, which increases p53 stability by suppressing the activity of MDM2. In this work, we show that nucleolar protein glioma tumor-suppressor candidate region gene 2 (GLTSCR2) translocates to the nucleoplasm under ribosomal stress, where it interacts with and stabilizes p53 and inhibits cell cycle progression without the involvement of the major upstream p53 regulator, ARF. Furthermore, ectopic expression of GLTSCR2 significantly suppressed growth of cancer cells in a xenograft animal model via p53-dependent pathway. Our data identify GLTSCR2 as a new member of the nucleolus-nucleoplasmic axis for p53 regulation. ARF-independent direct regulation of p53 by GLTSCR2 may be a key mechanism and therapeutic target for cell death or growth inhibition when nucleolus-ARF-p53 pathways are inactivated by genetic or epigenetic modifications of ARF, which are the second most common types of genetic change observed in human cancers.  相似文献   

18.
p33(ING1)是生长抑制基因(ING1)编码的重要抑癌蛋白,具有抑制细胞生长﹑促进细胞老化﹑维持基因组稳定性、作用于细胞周期调控点等作用,其失活与肿瘤的发生、发展密切相关。本文就近年来有关p33(ING1)的结构、功能及其在肿瘤中的失活机制、临床应用前景等方面的研究进展进行了概述。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号