首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The survival of Yersinia enterocolitica serotype O9 within mouse peritoneal macrophages was investigated. To evaluate the role of the virulence plasmid in the resistance to intracellular killing, an isogenic pair of virulent (plasmid-bearing) and avirulent (plasmid-less) O9 strains was used. The virulent strain was able to express plasmid-encoded outer membrane proteins and to colonize the Peyer's patches of orally infected mice. When mice were infected intraperitoneally, both strains were recovered at similar rates and over the same time from the peritoneal cavity. When in vitro assays were performed, both strains showed similar resistance to intracellular killing by monolayers of resident and inflammatory peritoneal macrophages. Previous opsonization of bacteria did not modify their survival within macrophage monolayers. We concluded that serotype O9 strains display a chromosome-mediated resistance to intracellular killing by mouse peritoneal macrophages. Moreover, macrophage resistance does not seem to be of importance for virulence of serotype O9 strains in mice.  相似文献   

2.
Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core (OC) do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp), an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.  相似文献   

3.
Yersinia enterocolitica serotype O:3 strain 6471/76-c (YeO3-c) was sensitive to bacteriophage φR1-37 when grown at 37°C but not when grown at 22°C because of steric hindrance by abundant lipopolysaccharide (LPS) O-side chain (O-antigen) expressed at 22°C. The transposon library of YeO3-c was grown at 37°C and screened for phage φR1-37-resistant transposon insertion mutants. Three types of mutant were isolated: (i) phage receptor mutants expressing O-antigen (LPS-smooth), (ii) phage receptor mutants not expressing O-antigen (LPS-rough), and (iii) LPS-smooth mutants with the phage receptor constitutively sterically blocked. Mutant type (i) was characterized in detail; the transposon insertion inactivates an operon, named the trs operon. The main findings based on this mutant are: (i) the trs operon is involved in the biosynthesis of the LPS outer core in YeO3-c; the nucleotide sequence of the trs operon revealed eight novel genes showing similarity to known polysaccharide biosynthetic genes of various Gram-negative bacteria as well as to capsule biosynthesis genes of Staphylococcus aureus ; (ii) the biosynthesis of the core of YeO3-c involves at least two genetic loci; (iii) the trs operon is required for the biosynthesis of the bacteriophage φR1-37 receptor structures; (iv) the homopolymeric O-antigen of YeO3-c is ligated to the inner core in Y. enterocolitica O:3; (v) the trs operon is located between the adk—hemH and galE—gsk gene pairs in the Y. enterocolitica chromosome; and (vi) the phage φR1-37 receptor is present in many but not in all Y. enterocolitica serotypes. The results also allow us to speculate that the trs operon is a relic of the ancestral rfb region of Y. enterocolitica O:3 carrying genes indispensable for the completion of the core polysaccharide biosynthesis.  相似文献   

4.
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. Although much attention has been given to the biological effects of its lipid A portion, a great body of evidence indicates that its O chain polysaccharide (O antigen) portion plays an important role in the bacterium-host interplay. In this work we have studied in-depth the role of the O antigen in Yersinia enterocolitica serotype O:8 pathogenesis. We made a detailed virulence analysis of three mutants having different O antigen phenotypes: (i) LPS with no O antigen (rough mutant); (ii) LPS with one O unit (semirough mutant) and (iii) LPS with random distribution of O antigen chain lengths. We demonstrated that these LPS O antigen mutants were attenuated in virulence regardless of the infection route used. Co-infection experiments revealed that the rough and semirough mutants were severely impaired in their ability to colonize the Peyer's patches and in contrast to the wild-type strain they did not colonize spleen and liver. The mutant with random distribution of O antigen chain lengths, however, survived better but started to be cleared from mouse organs after 8 days. As an explanation to this attenuation we present here evidence that other Yersinia virulence factors depend on the presence of O antigen for their proper function and/or expression. We demonstrated that in the rough mutant: (i) the YadA function but not its expression was altered; (ii) Ail was not expressed and (iii) inv expression was downregulated. On the other hand, expression of flhDC, the flagellar master regulatory operon, was upregulated in this mutant with a concomitant increase in the production of flagellins. Finally, expression of yplA, encoding for the Yersinia phospholipase A, was also upregulated accompanied by an increased flagellar type III secretion system mediated secretion of YplA to culture medium. Together these findings suggest that the absence of O antigen in the outer membrane of Yersinia either directly or indirectly, for example through a cellular or membrane stress, could act as a regulatory signal.  相似文献   

5.
In this study, we investigated the colonizing ability as well as the association of Yersinia enterocolitica serotype 0:9 to epithelial cells of the intestinal tract, Peyer's patches, mesenteric lymph nodes, liver, spleen and lungs in Alloxan-induced diabetes mellitus in mice and controls. The results showed that: (a) in diabetic mice the Y. enterocolitica colonizing values were in range of 10(6.5)-10(8.25) CFU/g of feces; (b) maximum colonizing values were found in distal ileum and Peyer's patches and lower in colon; (c) the infection was progressive with dissemination of bacteria in the liver, spleen and lung; (d) in control (non-diabetic) mice, the colonizing values were 10-100 times lower than those found in the diabetic batch; (e) the main histopathological changes noticed, namely ileitis, mesenteric lymphadenitis and septicemia, were presumably induced by high bacterial load in the liver, spleen and lung leading to a septic course of infection as well as toxic effects of heat-stable enterotoxins of Y. enterocolitica (Yst). The results were confirmed by electron microscopy observations. Summing up, these results demonstrate that diabetic mice were more susceptible to Y. enterocolitica cells than normal mice.  相似文献   

6.
Reovirus type 1 Lang (T1L) adheres to M cells in the follicle-associated epithelium of mouse intestine and exploits the transport activity of M cells to enter and infect the Peyer's patch mucosa. Adult mice that have previously cleared a reovirus T1L infection have virus-specific immunoglobulin G (IgG) in serum and IgA in secretions and are protected against reinfection. Our aim in this study was to determine whether secretory IgA is sufficient for protection of Peyer's patches against oral reovirus challenge and, if so, against which reovirus antigen(s) the IgA may be directed. Monoclonal antibodies (MAbs) of the IgA isotype, directed against the sigma1 protein of reovirus T1L, the viral adhesin, were produced and tested along with other, existing IgA and IgG MAbs against reovirus T1L outer capsid proteins. Anti-sigma1 IgA and IgG MAbs neutralized reovirus T1L in L cell plaque reduction assays and inhibited T1L adherence to L cells and Caco-2(BBe) intestinal epithelial cells in vitro, but MAbs against other proteins did not. Passive oral administration of anti-sigma1 IgA and IgG MAbs prevented Peyer's patch infection in adult mice, but other MAbs did not. When anti-sigma1 IgA and IgG MAbs were produced in mice from hybridoma backpack tumors, however, the IgA prevented Peyer's patch infection, but the IgG did not. The results provide evidence that neutralizing IgA antibodies specific for the sigma1 protein are protective in vitro and in vivo and that the presence of these antibodies in intestinal secretions is sufficient for protection against entry of reovirus T1L into Peyer's patches.  相似文献   

7.
Yersinia enterocolitica serotype O:9 is a gram-negative enteropathogen that infects animals and humans. The role of lipopolysaccharide (LPS) in Y. enterocolitica O:9 pathogenesis, however, remains unclear. The O:9 LPS consists of lipid A to which is linked the inner core oligosaccharide, serving as an attachment site for both the outer core (OC) hexasaccharide and the O-polysaccharide (OPS; a homopolymer of N-formylperosamine). In this work, we cloned the OPS gene cluster of O:9 and identified 12 genes organized into four operons upstream of the gnd gene. Ten genes were predicted to encode glycosyltransferases, the ATP-binding cassette polysaccharide translocators, or enzymes required for the biosynthesis of GDP-N-formylperosamine. The two remaining genes within the OPS gene cluster, galF and galU, were not ascribed a clear function in OPS biosynthesis; however, the latter gene appeared to be essential for O:9. The biological functions of O:9 OPS and OC were studied using isogenic mutants lacking one or both of these LPS parts. We showed that OPS and OC confer resistance to human complement and polymyxin B; the OPS effect on polymyxin B resistance could be observed only in the absence of OC.  相似文献   

8.
Antimicrobial peptides (APs) belong to the arsenal of weapons of the innate immune system against infections. In the case of gram-negative bacteria, APs interact with the anionic lipid A moiety of the lipopolysaccharide (LPS). In yersiniae most virulence factors are temperature regulated. Studies from our laboratory demonstrated that Yersinia enterocolitica is more susceptible to polymyxin B, a model AP, when grown at 37°C than at 22°C (J. A. Bengoechea, R. Díaz, and I. Moriyón, Infect. Immun. 64:4891-4899, 1996), and here we have extended this observation to other APs, not structurally related to polymyxin B. Mechanistically, we demonstrate that the lipid A modifications with aminoarabinose and palmitate are downregulated at 37°C and that they contribute to AP resistance together with the LPS O-polysaccharide. Bacterial loads of lipid A mutants in Peyer's patches, liver, and spleen of orogastrically infected mice were lower than those of the wild-type strain at 3 and 7 days postinfection. PhoPQ and PmrAB two-component systems govern the expression of the loci required to modify lipid A with aminoarabinose and palmitate, and their expressions are also temperature regulated. Our findings support the notion that the temperature-dependent regulation of loci controlling lipid A modifications could be explained by H-NS-dependent negative regulation alleviated by RovA. In turn, our data also demonstrate that PhoPQ and PmrAB regulate positively the expression of rovA, the effect of PhoPQ being more important. However, rovA expression reached wild-type levels in the phoPQ pmrAB mutant background, hence indicating the existence of an unknown regulatory network controlling rovA expression in this background.  相似文献   

9.
Intragastric inoculation with whole-virion vaccine of inactivated influenza virus resulted in production of hemagglutinin (HA)-specific immunoglobulin A (IgA) and IgG both in lung lavage fluids and in serum samples of mice. HA-specific IgA was the predominant isotypic antibody secreted in the lung lavage fluids (average IgA/IgG ratio, 13:1), whereas HA-specific IgG was the major antibody class in serum (average IgA/IgG ratio, 0.3:1). These responses were similar to the antibody responses stimulated by intranasal infection with live influenza virus. In vitro cultures of lymphoid cells from lungs and Peyer's patches, but not from spleens, in the presence of homologous antigen, from mice vaccinated intragastrically synthesized mostly HA-specific IgA. Mice immunized parenterally with inactivated influenza virus produced only IgG in lung lavage fluids and sera. Cultures of lymphoid cells from their spleens, but not their lungs, synthesized HA-specific IgG upon antigenic stimulation in vitro; neither synthesized IgA. These in vitro cell culture results, as well as the inverse relationship of IgA/IgG ratios in lung lavage fluids and sera, demonstrated that the IgA antibody in lung lavage fluids was actively synthesized locally in the lungs of intragastrically immunized mice. This finding was consistent with the migratory distribution of antigen-primed lymphoid cells from Peyer's patches to distant lymphoid tissue such as lung. Intragastric vaccination conferred protection against intranasal challenge with a lethal dose of virulent virus.  相似文献   

10.
We reported previously that the core oligosaccharide region of the lipopolysaccharide (LPS) is essential for optimal adhesion of Actinobacillus pleuropneumoniae, an important swine pathogen, to respiratory tract cells. Rough LPS and core LPS mutants of A. pleuropneumoniae serotype 1 were generated by using a mini-Tn10 transposon mutagenesis system. Here we performed a structural analysis of the oligosaccharide region of three core LPS mutants that still produce the same O-antigen by using methylation analyses and mass spectrometry. We also performed a kinetic study of proinflammatory cytokines production such as interleukin (IL)-6, tumor necrosis factor-alpha, IL1-beta, MCP-1, and IL8 by LPS-stimulated porcine alveolar macrophages, which showed that purified LPS of the parent strain, the rough LPS and core LPS mutants, had the same ability to stimulate the production of cytokines. Most interestingly, an in vitro susceptibility test of these LPS mutants to antimicrobial peptides showed that the three core LPS mutants were more susceptible to cationic peptides than both the rough LPS mutant and the wild type parent strain. Furthermore, experimental pig infections with these mutants revealed that the galactose (Gal I) and d,d-heptose (Hep IV) residues present in the outer core of A. pleuropneumoniae serotype 1 LPS are important for adhesion and overall virulence in the natural host, whereas deletion of the terminal GalNAc-Gal II disaccharide had no effect. Our data suggest that an intact core-lipid A region is required for optimal protection of A. pleuropneumoniae against cationic peptides and that deletion of specific residues in the outer LPS core results in the attenuation of the virulence of A. pleuropneumoniae serotype 1.  相似文献   

11.
Conventional and germfree mice ingested a suspension of 2-micron latex particles in drinking water for a 15-day period. Number and distribution of intestinal Peyer's patches did not differ significantly in the two types of mice. Cleared Peyer's patches were compared with regard to size and particle content. The location of particles within Peyer's patch follicles of germfree mice was similar to that of conventional mice, but the latter had significantly larger follicles and greater accumulations of latex particles. Latex concentration varied with patch location. Proximal patches contained the majority of particles in germfree mice, whereas particles were most abundant in distal patches of conventional mice. The results show that particle uptake into Peyer's patches takes place even in the complete absence of bacteria in the gut.  相似文献   

12.
In lipopolysaccharide (LPS) biosynthesis of gram-negative bacteria the lipid A-core oligosaccharide (LA-core) and O-polysaccharide (O-PS) biosynthesis pathways proceed separately and converge in periplasmic space where the waaL-encoded ligase joins O-PS onto LA-core. Enterobacterial common antigen (ECA) biosynthesis follows that of O-PS except that ECA is usually ligated to phosphatidylglycerol (PG) and only rarely to LA-core. In Yersinia enterocolitica serotype O:3 LPS is composed of LA-inner core (IC) onto which a homopolymeric O-PS, a hexasaccharide called outer core (OC), and/or ECA are ligated. We found that an individual O:3 LPS molecule carries either OC or O-PS substitution but not both. Related to this, we identified three genes in Y. enterocolitica O:3 that all expressed O-PS ligase activity in the Escherichia coliΔwaaL mutant. The LPS phenotypes of Y. enterocolitica O:3 single, double and triple ligase mutants indicated that two of ligases, named as WaaL(os) and WaaL(ps) , had a preferred substrate specificity for OC and O-PS, respectively, although with some promiscuity between the ligases; the third ligase named as WaaL(xs) was not involved in LPS or ECA biosynthesis. In Y. enterocolitica O:8 the WaaL(os) homologue (Ye1727) ligated a single pentasaccharide O-unit to LA-IC suggesting that in both Y. enterocolitica O:3 and O:8 WaaL(os) is an oligosaccharide (OS)-specific ligase. Finally, Yersinia pestis and Y. pseudotuberculosis carry only the waaL(ps) gene, while either waaL(os) or waaL(xs) or both are additionally present in other Yersinia species. This is the first report on the presence of three different oligo-/polysaccharide-specific ligases in a single bacterium.  相似文献   

13.
The outer membranes of gram-negative bacteria are considered to be of importance in host-bacteria interaction, in protective immunity, and occasionally in subclassification within a species. In this study, the outer membranes of several strains of Yersinia enterocolitica and Y. pseudotuberculosis were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). It was found that the appearance of the major proteins depended on the temperature at which they were solubilized in SDS. A protein was identified with the use of two-dimensional gels and preparative SDS-PAGE, which was equivalent to the "heat-modifiable protein" (protein II) of other Enterobacteriaceae species. A monoclonal antibody, 4G1, was generated against an isolated preparation of this Y. enterocolitica protein. This antibody was tested with whole cell bacterial antigens of 46 individual bacterial strains. The reactive strains included only Y. enterocolitica and Y. pseudotuberculosis. In addition, the reactivity of the 4G1 monoclonal antibody preparation could be absorbed only with Y. enterocolitica and Y. pseudotuberculosis, and not with other strains of bacteria. The reactivity of this 4G1 monoclonal antibody was also tested by the Western Blot technique. Six individual strains were tested: a Y. enterocolitica serotype 0:3, a Y. enterocolitica serotype 0:9, an Escherichia coli, a Salmonella typhimurium, a Shigella flexneri, and a Klebsiella pneumoniae. The 4G1 antibody reacted with only the proteins of the two Y. enterocolitica strains. In conclusion, the equivalent of the heat-modifiable protein was present in Y. enterocolitica and Y. pseudotuberculosis. Moreover, this protein also carried a species-specific antigenic determinant.  相似文献   

14.
The Salmonella and related bacteria modify the structure of the lipid A portion of their lipopolysaccharide in response to environmental stimuli. Some lipid A modifications are required for virulence and resistance to cationic antimicrobial peptides. We now demonstrate that membranes of Salmonella typhimurium contain a novel hydrolase that removes the 3'-acyloxyacyl residue of lipid A in the presence of 5 mM Ca2+. We have identified the gene encoding the S. typhimurium lipid A 3'-O-deacylase, designated lpxR, by screening an ordered S. typhimurium genomic DNA library, harbored in Escherichia coli K-12, for expression of Ca2+-dependent 3'-O-deacylase activity in membranes. LpxR is synthesized with an N-terminal type I signal peptide and is localized to the outer membrane. Mass spectrometry was used to confirm the position of lipid A deacylation in vitro and the release of the intact 3'-acyloxyacyl group. Heterologous expression of lpxR in the E. coli K-12 W3110, which lacks lpxR, resulted in production of significant amounts of 3'-O-deacylated lipid A in growing cultures. Orthologues of LpxR are present in the genomes of E. coli O157:H7, Yersinia enterocolitica, Helicobacter pylori, and Vibrio cholerae. The function of LpxR is unknown, but it could play a role in pathogenesis because it might modulate the cytokine response of an infected animal.  相似文献   

15.
Three mutants of Yersinia enterocolitica O:3, namely: YeO3-R1, YeO3-RfbR7 and YeO3-c-trs8-R were classified on the basis of sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS/PAGE) profile of isolated lipopolysaccharides (LPS) as belonging to the Ra- (the first) and the Rc-type (the other two mutants). Methylation analysis, in addition to 13C and 1H NMR studies of purified core oligosaccharides revealed structures similar to those established previously for the full core of Y. enterocolitica O:3 in the case of the Ra mutant, and identical to that reported for the Rc mutant Ye75R, in the case of the two other mutants. The O-specific sugar, 6d-L-altrose, which forms a homopolymeric O-chain, was present in small amounts in all three LPS preparations, as well as in the core oligosaccha ride preparations along with the Ra and the Rc sugars, characteristic of the Y. enterocolitica O:3 core. This result is in line with genetic data, indicating that it is the inner core region which is the receptor for the O-specific chain in Y. enterocolitica O:3. This region seems likewise to be the anchoring region for the enterobacterial common antigen (ECA), as shown by SDS/PAGE/Western blot analysis with monoclonal antibodies against ECA. In addition, we also demonstrated that the Ye75R mutant Rc and its parental strain Ye75S, both were ECA-immunogenic strains. So far, ECA-immunogenic strains, i.e. those with LPS-linked ECA, were only identified in E. coli mutants of the R1, R4 and K-12 serotype.  相似文献   

16.
Reovirus type 1 Lang (T1L) infects the mouse intestinal mucosa by adhering specifically to epithelial M cells and exploiting M-cell transport to enter the Peyer's patches. Oral inoculation of adult mice has been shown to elicit cellular and humoral immune responses that clear the infection within 10 days. This study was designed to determine whether adult mice that have cleared a primary infection are protected against viral entry upon oral rechallenge and, if so, whether antireovirus secretory immunoglobulin A (S-IgA) is a necessary component of protection. Adult BALB/c mice that were orally inoculated on day 0 with reovirus T1L produced antiviral S-IgA in feces and IgG in serum directed primarily against the reovirus sigma1 attachment protein. Eight hours after oral reovirus challenge on day 21, the Peyer's patches of previously exposed mice contained no detectable virus whereas Peyer's patches of naive controls contained up to 2,300 PFU of reovirus/mg of tissue. Orally inoculated IgA knockout (IgA(-/-)) mice cleared the initial infection as effectively as wild-type mice and produced higher levels of reovirus-specific serum IgG and secretory IgM than C57BL/6 wild-type mice. When IgA(-/-) mice were rechallenged on day 21, however, their Peyer's patches became infected. These results indicate that intestinal S-IgA is an essential component of immune protection against reovirus entry into Peyer's patch mucosa.  相似文献   

17.
The defense mechanism against indigenous bacterial translocation was studied using a model of endogenous infection in X-irradiated mice. All mice irradiated with 9 Gy died from day 8 to day 15 after irradiation. The death of mice was observed in parallel with the appearance of bacteria from day 7 in various organs, and the causative agent was identified to be Escherichia coli, an indigenous bacterium translocating from the intestine. Decrease in the number of blood leukocytes, peritoneal cells and lymphocytes in Peyer's patches or mesenteric lymph nodes was observed as early as 1 day after irradiation with 6 or 9 Gy. The mitogenic response of lymphocytes from various lymphoid tissues was severely affected as well. The impairment of these parameters for host defense reached the peak 3 days after irradiation and there was no recovery. However, in vivo bactericidal activity of Kupffer cells in mice irradiated with 9 Gy was maintained in a normal level for a longer period. It was suggested that Kupffer cells play an important role in the defense against indigenous bacteria translocating from the intestine in mice.  相似文献   

18.
19.
Ubiquitin-derived peptides are bactericidal in vitro and contribute to the mycobactericidal activity of the lysosome. To further define interactions of ubiquitin-derived peptides with mycobacteria, we screened for mutants with increased resistance to the bactericidal activity of the synthetic ubiquitin-derived peptide Ub2. The four Ub2-resistant Mycobacterium smegmatis mutants were also resistant to the bactericidal action of other antimicrobial peptides and macrophages. Two mutants were in the mspA gene encoding the main M. smegmatis porin. Using a translocation-deficient MspA point mutant, we showed that susceptibility of M. smegmatis to Ub2 was independent of MspA channel activity. Instead, the M. smegmatis Ub2-resistant mutants shared a common phenotype of decreased cell wall permeability compared with wild-type bacteria. Expression of mspA rendered Mycobacterium tuberculosis CDC1551 more susceptible both to ubiquitin-derived peptides in vitro and to lysosomal killing in macrophages. Finally, biochemical assays designed to assess membrane integrity indicated that Ub2 treatment impairs membrane function of M. smegmatis and M. tuberculosis cells . The M. smegmatis Ub2-resistant mutants were more resistant than wild-type M. smegmatis to this damage. We conclude that Ub2 targets mycobacterial membranes and that reduced membrane permeability provides mycobacteria intrinsic resistance against antimicrobial compounds including bactericidal ubiquitin-derived peptides.  相似文献   

20.
Ail is a 17-kDa chromosomally encoded outer membrane protein that mediates serum resistance (complement resistance) in the pathogenic Yersiniae (Yersinia pestis, Y. enterocolitica, and Y. pseudotuberculosis). In this article, we demonstrate that Y. pseudotuberculosis Ail from strains PB1, 2812/79, and YPIII/pIB1 (serotypes O:1a, O:1b, and O:3, respectively) can bind the inhibitor of the classical and lectin pathways of complement, C4b-binding protein (C4BP). Binding was observed irrespective of serotype tested and independently of YadA, which is the primary C4BP receptor of Y. enterocolitica. Disruption of the ail gene in Y. pseudotuberculosis resulted in loss of C4BP binding. Cofactor assays revealed that bound C4BP is functional, because bound C4BP in the presence of factor I cleaved C4b. In the absence of YadA, Ail conferred serum resistance to strains PB1 and YPIII, whereas serum resistance was observed in strain 2812/79 in the absence of both YadA and Ail, suggesting additional serum resistance factors. Ail from strain YPIII/pIB1 alone can mediate serum resistance and C4BP binding, because its expression in a serum-sensitive laboratory strain of Escherichia coli conferred both of these phenotypes. Using a panel of C4BP mutants, each deficient in a single complement control protein domain, we observed that complement control protein domains 6-8 are important for binding to Ail. Binding of C4BP was unaffected by increasing heparin or salt concentrations, suggesting primarily nonionic interactions. These results indicate that Y. pseudotuberculosis Ail recruits C4BP in a functional manner, facilitating resistance to attack from complement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号