首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Neomycin, injected into ascidian oocytes to a final concentration of 10–50 mM, inhibits both the fertilization current and the surface contraction, showing that phosphoinositide hydrolysis is required for these early activation events. Sperm-activated fertilization currents are not inhibited in the presence of 100 μg/ml intracellular heparin, suggesting that these currents are not directly gated by InsP3. The sulfhydryl reagent thimerosal at 100 μM, in contrast, significantly increases the fertilization current presumably by sensitizing the channel receptor. Since heparin inhibits the surface contraction, InsP3 receptors are shown to play a role in the propagation of the activation response in ascidian oocyte. Depleting intracellular calcium stores by microinjecting 50 mM EGTA into oocytes does not activate fertilization channels; however, subsequent fertilization of these EGTA loaded oocytes leads to a significantly larger and faster fertilization current. Thus in contrast to somatic cells studied to date, second messenger operated plasma membrane channels in ascidian oocytes are not gated by calcium released from intracellular stores. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Different patterns of voltage-dependent ion currents are present in mature eggs and in early embryos of the ascidian Boltenia villosa, as if each ion current is regulated in a different manner between fertilization and the early cleavages of embryogenesis. The ion currents appear and/or disappear with precise timing suggesting that they play important roles at specific times during early development. We investigated changes in three voltage-dependent ion currents (an inwardly rectifying chloride current, a calcium current, and a sodium current) and membrane surface area over time between the resumption of meiosis (with fertilization or activation) and the first mitotic cleavage. Using time-lapse video recordings made during whole-cell patch-clamp experiments, we were able to correlate electrophysiological changes with morphological changes and cell cycle related events. Between fertilization and first cleavage, INa was lost exponentially, the density of ICa remained relatively constant, and the amplitudes of both ICl and membrane surface area fluctuated in time with the cell cycle. ICl and surface area increased whenever the cell began dividing--with the polar body extrusions and the formation of the first cleavage furrow. This suggested that the values of ICl and surface area were largest during interphase and smallest during M-phase of each cell cycle. This hypothesis was supported by an experiment in which entry into M-phase was blocked in fertilized eggs by inhibiting protein synthesis. This prevented the decreases of ICl and surface area but allowed the increases to occur normally. Patterns of change in ion currents are current specific and, as is the case with ICl, are tightly correlated with developmental events.  相似文献   

3.
Eggs of the ascidian Ciona intestinalis were loaded with the calcium indicator fura-2 via whole-cell clamp electrodes and changes in cytoplasmic calcium and cell currents were monitored during fertilization either in separate eggs or simultaneously in the same egg. The first indication of egg activation was the fertilization current; which reached peak values around 1 nA after 30 s. A wave of elevated calcium was detectable between 5 s and 30 s (mean = 21 s) after the start of the fertilization current. This wave spread across the egg increasing cytoplasmic calcium levels to at least 10 microM. When the fertilization current and calcium wave were complete and cytoplasmic calcium levels were decreasing to prefertilization levels, a cortical contraction wave spread across the egg surface. In eggs showing normal fertilization current, the calcium wave and the contraction wave were in the same direction. A region of elevated calcium persisted at the animal pole. Changing cytoplasmic calcium levels locally by local application of ionophore A23187 caused a contraction wave originating at the site of ionophore application. Increasing cytoplasmic calcium uniformly by facilitating calcium entry through voltage-regulated channels did not result in a contraction wave.  相似文献   

4.
Voltage-dependent calcium currents play a fundamental role during oocyte maturation, mostly L-type calcium currents, whereas T-type calcium currents are involved in sperm physiology and cell growth. In this paper, using an electrophysiological and pharmacological approach, we demonstrated, for the first time in oocytes, that T-type calcium currents are present with functional consequences on the plasma membrane of growing immature oocytes of the ascidian Styela plicata. We classified three subtypes of immature oocytes at the germinal vesicle stage on the basis of their size, morphology and accessory cellular structures. These stages were clearly associated with an increased activity of T-type calcium currents and hyperpolarization of the plasma membrane. We also observed that T-type calcium currents oscillate in the post-fertilization embryonic stages, with minimal amplitude of the currents in the zygote and maximal at 8-cell stage. In addition, chemical inhibition of T-type calcium currents, obtained by applying specific antagonists, induced a significant reduction in the rate of cleavage and absence of larval formation. We suggest that calcium entry via T-type calcium channels may act as a potential pacemaker in regulating cytosolic calcium involved in fertilization and early developmental events.  相似文献   

5.
Fertilization channels in ascidian eggs are not activated by Ca   总被引:1,自引:0,他引:1  
Using the whole-cell voltage clamp technique, experiments were carried out on ascidian eggs to determine the role of intracellular Ca in the gating of fertilization channels. Raising the level of Ca by adding Ca to the intracellular perfusion medium or by loading the egg cortex (greater than 50 microM) with Ca through voltage gated channels did not lead to the activation of fertilization channels. Alternatively, eggs exposed to low-Ca seawater, perfused with the chelator K-EGTA or Ca channel blocking agents to prevent the release of Ca from intracellular organelles, and subsequently inseminated generated fertilization currents. This argues against Ca as a second messenger in the activation of fertilization channels in the ascidian egg and alternative mechanisms are discussed.  相似文献   

6.
The spatial distribution of voltage-dependent ionic currents was characterized in Boltenia villosa eggs before and after fertilization using two-microelectrode voltage clamp of paired animal-vegetal halves of eggs (merogones) made surgically. Major voltage-dependent conductances in the Boltenia egg are a transient inward Na current, a transient inward Ca current, and an inwardly rectifying K current. These currents were randomly distributed along the animal-vegetal axis in the unfertilized egg. When paired merogones (surgically prepared egg fragments) were made at the vegetal cap stage, 15-30 min after fertilization, Ca and K currents remained randomly distributed along the animal-vegetal axis. In contrast, the relative Na current density was found to be twofold lower in the vegetal vs the animal merogones made at the vegetal cap stage. By making pairs of merogones from unfertilized eggs and subsequently fertilizing one merogone of a pair, we showed that this change in current density ratio was due to a loss of absolute Na current density in the vegetal hemisphere shortly after fertilization. These results also show that this loss was intrinsic to the vegetal hemisphere, rather than being determined solely by the point of sperm entry. A second decrease in Na current was observed during the hour before first cleavage, 60-120 min after fertilization (M.L. Block and W.J. Moody, 1987, J. Physiol. 393, 619-634), both in fertilized eggs and in animal merogones fertilized after isolation. This second loss of Na current was not observed in vegetal merogones fertilized after isolation or in either animal or vegetal merogones made from fertilized eggs at the vegetal cap stage. Possible mechanisms for te rapid (complete by 40 min after fertilization) and the late (occurring from ca. 60 to 120 minutes after fertilization) Na current losses are discussed.  相似文献   

7.
Electrophysiological techniques were used to study the role of ion currents in the ascidian Ciona intestinalis oocyte plasma membrane during different stages of growth, meiosis, fertilization and early development. Three stages of immature oocytes were discriminated in the ovary, with the germinal vesicle showing specific different features of growth and maturation. Stage-A (pre-vitellogenic) oocytes exhibited the highest L-type calcium current activity and were incompetent for meiosis resumption. Stage-B (vitellogenic) oocytes showed a progressive disappearance of calcium currents and the first appearance of sodium currents that remained high during the maturation process, up to the post-vitellogenic stage-C oocytes. The latter had acquired meiotic competence, undergoing spontaneous in vitro maturation and interacting with the spermatozoon. However, fertilized oocytes did not produce normal larvae, suggesting that cytoplasmic maturation may affect embryo development. In mature oocytes at the metaphase I stage, sodium currents were present and remained high up to the zygote stage. Oocytes fertilized in the absence of sodium showed significant reduction of the fertilization current amplitude and high development of anomalous "rosette" embryos. Current amplitudes became negligible in embryos at the 2- and 4-cell stage, whereas resumption of all the current activities occurred at the 8-cell embryo. Taken together, these results suggest: (i) an involvement of L-type calcium currents in initial oocyte meiotic progression and growth; (ii) a role of sodium currents at fertilization; (iii) a role of the fertilization current in ensuring normal embryo development.  相似文献   

8.
Calcium currents through the somatic membrane of cultivated (a low-density culture) hippocampal neurons of rats were studied with the use of a patch-clamp technique in the whole-cell configuration. Low- and high-threshold components of calcium currents were found in the somata of all studied cells. Low-threshold currents were activated at a membrane potential of about−75 mV and reached the maximum amplitude at −45±4 mV, while the maximum amplitude of high-threshold currents was observed at 17±6 mV. Low-threshold calcium currents differed from high-threshold current in weak suppression by low Cd2+ concentration (10–20 μM), while Ni2+ inhibited both types of calcium currents to an equal extent. Experiments with organic channel blockers showed that in most neurons at least four channel types were expressed: these were L, N, P, and channels insensitive to the used blockers (presumably, R-type). A blocker of L-type calcium channels, nifedipine (10 μM), blocked, on the average, 22.7±5.2%; a blocker of N-type channels, ω-CTx-GVIA (1.0 μM), blocked 30.0±5.0% and a blocker of P/Q channels, ω-Aga-IVA (200 nM), blocked 37.2±13.3% of the integral high-threshold current. A resistive component equalled 15.7±5.1% of the latter current. It is concluded that hippocampal neurons cultivated with a low density express a pharmacologically heterogeneous population of calcium channels, and the relative proportions of different type channels are close to the earlier described channel type composition in rat hippocampal slices. Our study shows that the low-density culture can be used as an adequate model for studying calcium channels in the somatic membrane of hippocampal neurons.  相似文献   

9.
The actions of autocrine ligands are required for the normal development of the preimplantation embryo in vitro. These ligands act as survival factors for the preimplantation stage embryo. One autocrine ligand, paf (1-o-alkyl-2-acetyl-sn-gylcero-3-phosphocholine), induced a dihydropyridine-sensitive calcium transient in the zygote and two-cell embryo, and these transients were required for the normal preimplantation stage survival. Paf induces an influx of external calcium through a dihydropyridine-sensitive channel. Dihydropyridine-sensitive currents are voltage-regulated, yet to date there is no evidence of membrane voltage depolarization in the two-cell embryo. To define the paf-induced calcium influx we have examined the response of the membrane potential and ion currents to paf in two-cell embryos. An initial response to paf challenge was the expression of an ion current (-15.6+/-1.6 pA) that was dependent upon extracellular calcium, was not voltage-gated but was dihydropyridine (nifedipine)-sensitive. This calcium current was followed (91+/-6 s after paf) by a net outward current (284+/-59 pA) that was composed of 4,4'-diisothiocyanatostilbene-2,2'-disulfonate-sensitive (anion channel blocker) and tetraethylammonium chloride-sensitive (K(+) channel blocker) currents. This current corresponded temporally with a marked paf-induced transient hyperpolarization of the membrane potential (-8.4+/-1.2 mV) that was dependent upon the generation of the calcium transient. The results directly demonstrate the activation of a voltage-independent calcium current in response to paf and show for the first time the expression of an afterhyperpolarization that occurs as a response to the calcium transient.  相似文献   

10.
Upon fertilization, ascidian eggs release a cell surface glycosidase used in the block to polyspermy and undergo cortical contractions resulting from increased intracellular calcium levels. The glycosidase is released by fertilization, calcium ionophores or added phospholipase C (PLC) activity. The PLC inhibitor D609 blocks glycosidase release. Intact Ascidia ceratodes eggs cleave 4-methylumbelliferyl-phospho-choline when it is added to seawater. This yields highly fluorescent 4-methylumbelliferone. Authentic phospholipase C but not phospholipase D can cleave this substrate. Thus, the authors believe that cleavage of the substrate is specific for PLC activity. Eggs incubated in the fluorogenic substrate after having been washed and detergent extracted were not fluorescent. Therefore the substrate failed to enter intact cells. Glycosidase release and PLC activity were stimulated by ionomycin. Octylglucoside or Triton X-100 extracts of ascidian eggs had two forms of phospholipase activity as shown by ion affinity chromatography: PL1 eluting at 0.25 mol/L NaCl and PL2 eluting at 0.6mol/L NaCl. The PL1 appeared to be isolated as a single protein. When surface proteins were labeled with non-penetrating biotin and were subsequently reacted with streptavidin, half of the PLC activity bound. This demonstrates that half the ascidian egg PLC activity is located on the surface of either the egg or follicle cell, and half is located within the egg.  相似文献   

11.
We have studied Ca2+ currents in ascidian eggs using the whole-cell clamp technique. T and L components, as observed in somatic cells, are present and the L-type current predominates. Since the IV relationship for these inward currents overlap at -30 mV, separation of the two components using different voltage regimes is not feasible. Increasing external Ca2+ results in larger currents. The L-type current decreases in a dose-dependent fashion in the presence of Mn2+ and Nifedipine, while the T-type current is inhibited in Ni2+. When Ba2+ was used as the carrier ion, channel kinetics and conductance were completely altered. Considering the density and kinetics of L-type channels in unfertilized eggs it is probable they play an important role in regulating cytosolic Ca2+ during early developmental processes.  相似文献   

12.
The myoplasm of ascidian eggs is a localized cytoskeletal domain that is segregated to presumptive larval tail muscle cells during embryonic development. We have identified a cytoskeletal protein recognized by a vertebrate neurofilament monoclonal antibody (NN18) which is concentrated in the myoplasm in eggs and embryos of a variety of ascidian species. The NN18 antigen is localized in the periphery of unfertilized eggs, segregates with the myoplasm after fertilization, and enters the larval tail muscle cells during embryonic development. Western blots of one-dimensional and two-dimensional gels showed that the major component recognized by NN18 antibody is a 58 x 10(3) Mr protein (p58), which exists in at least three different isoforms. The enrichment of p58 in the Triton X-100-insoluble fraction of eggs and its reticular staining pattern in eggs and embryos suggests that it is a cytoskeletal protein. In subsequent experiments, p58 was used as a marker to determine whether changes in the myoplasm occur in eggs of anural ascidian species, i.e. those exhibiting a life cycle lacking tadpole larvae with differentiated muscle cells. Although p58 was localized in the myoplasm in eggs of four urodele ascidian species that develop into swimming tadpole larvae, this protein was distributed uniformly in eggs of three anural ascidian species. The eggs of two of these anural species contained the actin lamina, another component of the myoplasm, whereas the third anural species lacked the actin lamina. There was no detectible localization of p58 after fertilization or segregation into muscle lineage cells during cleavage of anural eggs. NN18 antigen was uniformly distributed in pre-vitellogenic oocytes and then localized in the perinuclear zone during vitellogenesis of urodele and anural ascidians. Subsequently, NN18 antigen was concentrated in the peripheral cytoplasm of post-vitellogenic oocytes and mature eggs of urodele, but not anural, ascidians. It is concluded that the myoplasm of ascidian eggs contains an intermediate filament-like cytoskeletal network which is missing in anural species that have modified or eliminated the tadpole larva.  相似文献   

13.
Effect of nifedipine on inhibitory postsynaptic currents (IPSC) was studied in cultured hippocampal neurons. Nifedipine, if used in low concentrations, caused no essential changes in the IPSC amplitude. If used in high concentrations (50 or 100 μM), this calcium channel blocker reduced the IPSC amplitude, on the average, by 35 and 42%, respectively. The calcium current component sensitive to nifedipine at high concentrations was found to be insensitive to the agents, which block calcium channels of N- and P/Q types. It is concluded that the L-type calcium channels sensitive to nifedipine in low concentrations are absent in the presynaptic membrane of inhibitory synapses, whereas the only component of calcium current sensitive to this blocking agent in a high concentration, as well as the ω-CTx-GVIA- and ω-Aga-IVA-sensitive components of this current, participate in the transmission of inhibitory synaptic influences on the neurons studied.  相似文献   

14.
Summary Depolarization-activated outward currents ranging in amplitude from 100–1000 pA were studied in cultured, insulinsecreting HIT cells and mouse B-cells using the whole-cell patch clamp. Outward current was identified as a K current since it was blocked by K channel blockers and its tail current reversed nearE K. The K currents of HIT cells dialyzed with internal solutions containing 0.1–10mm EGTA with no added calcium (Ca), or 10mm EGTA with 2mm added Ca, activated rapidly with depolarization. However, the stronger Ca buffer BAPTA (5mm; no added Ca) blocked the rapidly activating current to reveal an underlying more slowly activating K current. With intracellular EGTA, application of the Ca channel blocker cadmium mimicked the effect of intracellular BAPTA. These data suggest that the rapid K current was mediated by low-voltage threshold, Ca-activated K channels while the slower K current was mediated by high threshold delayed rectifier K channels. Mouse B-cells also had both K current components. Dialyzing these cells with either BAPTA (5mm, no added Ca) or high EGTA (10mm with 2mm Ca) blocked the rapid Ca-activated K current observed when cells were filled with 0.1 to 1mm EGTA. It is concluded that the extent of Ca-activated K current activation in either HIT or adult mouse B-cells depends on the degree of intracellular Ca buffering.  相似文献   

15.
The effects of bioactive aldehydes from diatoms, unicellular algae at the base of the marine food web, were studied on fertilization and early development processes of the ascidian Ciona intestinalis. Using whole-cell voltage clamp techniques, we show that 2-trans-4-trans-decadienal (DD) and 2-trans-4-cis-7-cis-decatrienal (DT) inhibited the fertilization current which is generated in oocytes upon interaction with the spermatozoon. This inhibition was dose-dependent and was accompanied by inhibition of the voltage-gated calcium current activity of the plasma membrane. DD and DT did not inhibit the subsequent contraction of the cortex. Moreover, DD specifically acted as a fertilization channel inhibitor since it did not affect the steady state conductance of the plasma membrane or gap junctional (GJ) communication within blastomeres of the embryo. On the other hand, DD did affect actin reorganization even though the mechanism of action on actin filaments differed from that of other actin blockers. Possibly this effect on actin reorganization was responsible for the subsequent teratogenic action on larval development. The effect of DD was reversible if oocytes were washed soon after fertilization indicating that DD may specifically target certain fertilization mechanisms. Thus, diatom reactive aldehydes such as DD may have a dual effect on reproductive processes, influencing primary fertilization events such as gating of fertilization channels and secondary processes such as actin reorganization which is responsible for the segregation of cell lineages. These findings add to a growing body of evidence on the antiproliferative effects of diatom-derived aldehydes. Our results also report, for the first time, on the action of a fertilization channel blocker in marine invertebrates.  相似文献   

16.
Primary and secondary messengers in the activation of ascidian eggs   总被引:8,自引:0,他引:8  
Two early events of activation in the ascidian egg, the surface contraction and the fertilization current, were studied. Ca ionophore induces contraction without generating a fertilization current, whereas microinjection of IP3 or soluble fractions of homogenized spermatozoa trigger both a contraction and a current. This suggests that the primary trigger of activation in ascidian eggs is a soluble component of spermatozoa that may be released into the egg subsequent to gamete fusion. IP3, or other intermediates in phosphoinositide metabolism, is a putative second messenger that activates fertilization channels directly (probably a Ca-independent process), and subsequently induces surface contraction by releasing Ca from intracellular stores.  相似文献   

17.
The transient receptor potential (TRP) ion channels are thought to be involved in the entry of calcium ion into cells. In this study, we isolated a cDNA clone, HrTRPV, that shows high homology to Caenorhabditis elegans OSM-9, a TRPV subfamily member of the TRP family, from a Halocynthia roretzi fertilized egg cDNA library. We analyzed its properties using HrTRPV-transfected cells. Upon reduction of extracellular osmolarity, the intracellular calcium concentration was found to increase in HrTRPV-transfected cells. This increase in intracellular calcium concentration was dependent on the presence of extracellular calcium ion and was inhibited by treatment with gadolinium ion, a stretch-activated calcium channel blocker. Thus, these results indicate that ascidian egg HrTRPV is an osmotically sensitive TRP channel.  相似文献   

18.
Extensive cell movements accompany formation of the otic placode   总被引:11,自引:0,他引:11  
A centrally important factor in initiating egg activation at fertilization is a rise in free Ca(2+) in the egg cytosol. In echinoderm, ascidian, and vertebrate eggs, the Ca(2+) rise occurs as a result of inositol trisphosphate-mediated release of Ca(2+) from the endoplasmic reticulum. The release of Ca(2+) at fertilization in echinoderm and ascidian eggs requires SH2 domain-mediated activation of a Src family kinase (SFK) and phospholipase C (PLC)gamma. Though some evidence indicates that a SFK and PLC may also function at fertilization in vertebrate eggs, SH2 domain-mediated activation of PLC gamma appears not to be required. Much work has focused on identifying factors from sperm that initiate egg activation at fertilization, either as a result of sperm-egg contact or sperm-egg fusion. Current evidence from studies of ascidian and mammalian fertilization favors a fusion-mediated mechanism; this is supported by experiments indicating that injection of sperm extracts into eggs causes Ca(2+) release by the same pathway as fertilization.  相似文献   

19.
Sperm proteasomes are thought to be involved in sperm binding to and in sperm penetration through the vitelline coat of the eggs of the stolidobranch ascidian Halocynthia roretzi. However, it is not known whether they are involved in the fertilization of eggs of other ascidians. Therefore, we investigated whether sperm proteasomes are also involved in the fertilization of the eggs of the primitive phlebobranch ascidian Ciona intestinalis. Fertilization of the eggs of C. intestinalis was potently inhibited by the proteasome inhibitors MG115 and MG132 but not by the cysteine protease inhibitor E-64-d. On the other hand, neither fertilization of the vitelline coat-free eggs nor sperm binding to the vitelline coat was inhibited by the two proteasome inhibitors at a concentration sufficient to inhibit fertilization of intact eggs. These results indicate that the proteasome plays an essential role in sperm penetration through the vitelline coat rather than in sperm binding to the coat or in sperm-egg membrane fusion. The proteasome activity, which was detected in the sperm extract using Suc-Leu-Leu-Val-Tyr-MCA as a substrate, was strongly inhibited by both MG115 and MG132, and was weakly inhibited by chymostatin, whereas neither leupeptin nor E-64-d inhibited the activity. The molecular mass of the enzyme was estimated to be 600-kDa by Superose 12 gel filtration, and the activity in sperm extract was immunoprecipitated with an anti-proteasome antibody. These results indicate that the proteasome present in sperm of C. intestinalis is involved in fertilization, especially in the process of sperm penetration through the vitelline coat, probably functioning as a lysin. Mol. Reprod. Dev. 50:493–498, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
We studied whether nerve growth factor (NGF) can affect the membrane potential and conductance of PC12 cells. We demonstrate that NGF depolarizes the membrane of PC12 cells within a minute and by using transfected NIH 3T3-Trk and -p75 cells we show that both the high affinity NGF receptor p140(trk) and the low affinity NGF receptor or p75(NGF) may be involved in the depolarization. Tyrosine kinase inhibitor, K252a, partially inhibited the depolarization, but two agents affecting intracellular calcium movements, Xestospongin C (XeC) and thapsigargin, did not. The early depolarization was eliminated in Na+ free solutions and under this condition, a 'prolonged' (> 2 min) hyperpolarization was observed in PC12 cells in response to NGF. This hyperpolarization was also induced in PC12 cells by epidermal growth factor (EGF). Voltage clamp experiments showed that NGF produced a late (> 2 min) increase in membrane conductance. The Ca2+-dependent BK-type channel blocker, iberiotoxin, and the general Ca2+-dependent K+ channel blocker, TEA, attenuated or eliminated the hyperpolarization produced by NGF in sodium free media. Under pretreatment with the non-selective cation channel blockers La3+ and Gd3+, NGF hyperpolarized the membrane of PC12 cells. These results suggest that three different currents are implicated in rapid NGF-induced membrane voltage changes, namely an acutely activated Na+ current, Ca2+-dependent potassium currents and non-selective cation currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号