共查询到19条相似文献,搜索用时 62 毫秒
1.
激素对鸣禽发声控制神经元性二形的影响 总被引:1,自引:0,他引:1
雀形目多为鸣禽,是鸟类中最善于鸣叫的一类。然而,鸣禽的鸣叫能力在不同性别之间存在着明显的差异。一般是雄鸟善鸣,而雌鸟很少鸣叫或几乎不叫,这种现象称之为性二形(Sexual dimorphism)。不仅鸣叫能力如此,其它外观(如体形、羽毛颜色等)的两性差异亦属 相似文献
2.
3.
鸟类鸣叫机理是近年比较活跃的研究领域,已证明可为人类发声机理提供实验模型。本文作者通过自己的研究工作,对鸣禽控制发声的外围和中枢侧向优势作了简要介绍。 相似文献
4.
鸣禽白腰文鸟前脑发声控制核团的性双态性 总被引:12,自引:0,他引:12
应用神经示踪、放射免疫测定及组织学方法,对成体鸣禽白腰文鸟前脑发声控制核团的性双态性及血中的睾酮水平进行了研究。结果发现,前脑高级发声中枢、古纹状体粗核和X区三个发声控制核团均存在明显的性双态性,雄性的上述三个发声控制核团体积分别比雌性大5.31、4.01和1.92倍,在三个选定的平面上,雄性个体的前两个核团神经元数量超过雌性,但神经元分布的密度则小于雌性,差异均显著(P〈0.05)。从高级发声中 相似文献
5.
鸣禽前脑发声控制核团的雌雄差别 总被引:19,自引:5,他引:19
本文应用尼氏染色组织学方法,对黄喉鹀(Emberiza elegans)、黄雀(Carduclis spinus)和燕雀(Fringilla montifringilla)三种鸣禽的前脑发声控制核团(HVc,RA,Area X)进行了观察和比较。结果表明,这些核团的体积存在着显著的性双形性。雄鸟的核团体积均大于雌鸟(P<0.001)。说明鸟类鸣啭行为的性别差异是由其神经结构的形态不同所造成的。 相似文献
6.
7.
鸣禽发声学习记忆与即刻早期基因 总被引:3,自引:0,他引:3
鸣禽受到声音信号的刺激或自身表现出发声行为时,脑内即刻早期基因(immediate early gene,IEG)能迅速被激活而表达.其中zenk、c-fos和c-jun表达的脑区及水平与鸟在鸣唱时神经元的活动区域及活动程度相一致,暗示IEG在鸣禽发声学习记忆中起重要作用. 相似文献
8.
白腰文鸟发声行为的性别差异及其机制 总被引:2,自引:1,他引:2
通过声谱分析,研究了5-120日龄雌、雄白腰文鸟(Lonchura striata swinhoei)的声谱变化,及该时段3个主要发声控制核团)HVC、RA、Area X)体积、睾丸(睾酮)的相应改变。结果如下:①45日龄以前,雌雄鸟只能发出简单鸣叫(call),鸣声基本不会鸣唱。②雄性HVC,RA,AreaX体积均比雌性大2-6部。3个核团的大小发育不完全一致。各核团的快速生长期与鸣唱学习的主要时段(60-120日龄)不同步,说明核团的个体发育可能不完全受发声行为的影响。③睾丸的充分发育(120日龄后)及血液中具有较高的睾酮水平是雄鸟发出成熟鸣唱语句的重要条件。 相似文献
9.
白腰文鸟发声行为的神经发育 总被引:5,自引:0,他引:5
本文研究了 5~ 15 0日龄雄性白腰文鸟 (Lonchurastriataswinhoei)不同年龄段的声谱变化以及这种变化的神经调制机制。结果如下 :(1)HVC、RA和AreaX三个发声核团的神经联系基本接近成年鸟的水平后 ,幼鸟才开始学习鸣叫 (约 45日龄 ) ;(2 )HVC、RA和AreaX达到成年核团体积时 (约 80日龄 ) ,幼鸟才具有成年雄鸟的鸣叫模式 ;(3)发声控制核团的发育与核团间的神经支配有关 ,而基本不受鸣唱行为的影响 ,HVC、RA和AreaX的最快增长时间段各不相同 ,三个核团随年龄增长而呈现体积增长的显著变化 (one wayANOVA ,P <0 0 5 ) ,但各核团在任意两个时间段的体积差异并不都显著。结果提示 :发声行为产生的时间和发展与发声控制核团的发育、核团间的神经联系有关 ,最终的体积发育程度受内在遗传力的作用 ,同时可能还受神经核团建立正常神经联系时间的影响 相似文献
10.
11.
鸣禽鸣唱控制系统的前端脑通路(anterior forebrain pathway, AFP)在鸣唱学习中发挥着重要作用。新纹状体巨细胞核外侧部(lateral magnocellular nucleus of the anterior neostriatum, LMAN)是AFP的最后一级输出核团,AFP中的信号通过LMAN传导到弓状皮质栎核(robust nucleus of the arcopallium, RA),与高级发声中枢(high vocal centre,HVC)共同调节RA的活动,从而影响鸣禽的发声行为。LMAN可能通过其与RA的单突触连接来影响鸣唱可塑性。文章对近年来LMAN在鸣唱学习可塑性方面的研究进行综述。 相似文献
12.
蛙类下丘脑—脑垂体—性腺轴的内分泌调节 总被引:2,自引:1,他引:2
本文从“下丘脑-脑垂本-性腺”轴方面,综述了蛙类生殖内分泌学研究领域所限得的主要成就和研究进展。对于今后的工作,从理论和生产方面提出了一些看法。 相似文献
13.
为探讨扬子鳄卵巢内不同性类固醇激素受体在卵泡发育中的调控作用,研究采用组织学和免疫细胞化学方法,运用激光共聚焦显微镜,对扬子鳄不同发育时期卵泡中的雌激素受体、雄激素受体和孕激素受体进行了检测。结果发现,3种类固醇激素受体在卵巢各期滤泡细胞中均有表达,在4月Ⅱ-Ⅳ期卵泡的滤泡细胞中阳性反应最强;9月卵巢的滤泡细胞中阳性反应最弱;ER和AR不仅在各期滤泡细胞中存在阳性位点,在6月卵泡的卵母细胞胞质中也有表达。结果说明,在扬子鳄卵母细胞生长发育和成熟过程中,3种激素受体通过与其对应的激素结合对滤泡细胞的发育、卵黄的合成与积累以及排卵起着重要的调控作用。
相似文献
14.
15.
鸣禽鸣唱控制系统的前端脑通路(anterior forebrain pathway,AFP)在呜唱学习中发挥着重要作用.新纹状体巨细胞核外侧部(lateral magnocellular nucleus of the anterior neostriatum,LMAN)是AFP的最后一级输出核团,AFP中的信号通过LMAN传导到弓状皮质栎核(robust nucleus of the arcopallium,RA),与高级发声中枢(high vocal centre,HVC)共同调节RA的活动,从而影响鸣禽的发声行为.LMAN可能通过其与RA的单突触连接来影响鸣唱可塑性.文章对近年来LMAN在呜唱学习可塑性方面的研究进行综述. 相似文献
16.
本实验用地塞米松造成大鼠垂体促皮质激素细胞及其靶腺肾上腺皮质束状带细胞分泌抑制,对这两种细胞中的溶酶体及分泌自噬和自体吞噬活动进行了超微结构观察、CMP 酶细胞化学定性和形态计量。实验结果显示,在分泌受抑制状态下,垂体促皮质激素细胞中分泌自噬和自体吞噬作用加强,与此同时,肾上腺皮质细胞中自体吞噬作用也业著加强。这些结果表明,在分泌类固醇激素的细胞中,溶酶体以自体吞噬的方式清除一部分生产激素的细胞器,可能是一种普遍存在的分泌调节机制,正如在分泌蛋白质和肽类激素的细胞中普遍存在着分泌自噬这一调节机制一样。 相似文献
17.
大鲵的水下发声与相关行为 总被引:2,自引:0,他引:2
无尾类两栖动物的复杂的声行为对其繁殖与物种的识别具有重要的作用,而有尾类除了少数种类可以发出 微弱的“吱吱”声或吠声外,在过去一直被认为是基本不发声的。但是,最近的基于解剖学的证据的研究显示隐腮 鲵科(Cryptobranchidae)可能是一个例外。为了检验这一假说,作者对实验室严格控制的条件下的4只中国大鲵(An- drias davidianus)进行了观察。观察结果不仅表明动物在水下发声,同时也观察到了与之相关联的行为。作者对进 一步在野生条件下开展研究提出了建议。 相似文献
18.
HORMONAL REGULATION OF NITRATE REDUCTASE ACTIVITY IN LEAVES 总被引:1,自引:0,他引:1
19.
THE EFFECT OF VESSEL NOISE ON THE VOCAL BEHAVIOR OF BELUGAS IN THE ST. LAWRENCE RIVER ESTUARY,CANADA
Vronique Lesage Cyrille Barrette Michael C. S. Kingsley Becky Sjare 《Marine Mammal Science》1999,15(1):65-84
During June-July 1991, we monitored the vocal behavior of belugas before, during, and after exposure to noise from a small motorboat and a ferry to determine if there were any consistent patterns in their vocal behavior when exposed to these two familiar, but different sources of potential disturbance. Vocal responses were observed in all trials and were more persistent when whales were exposed to the ferry than to the small boat. These included (1) a progressive reduction in calling rate from 3.4–10.5 calls/whale/min to 0.0 or <1.0 calls/whale/min while vessels were approaching; (2) brief increases in the emission of falling tonal calls and the theree pulsed-tone call types; (3) at distances <1 km, an increase in the repetition of specific calls, and (4) a shift in frequency bands used by vocalizing animals from a mean frequency of 3.6 kHz prior to exposure to noise to frequencies of 5.2-8.8 kHz when vessels were close to the whales. 相似文献