首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The level of acetyl-coenzyme-A carboxylase activity in Candida lipolytica undergoes large variations depending upon the carbon source on which the yeast is grown. Cells grown on n-alkanes or fatty acids exhibit a lower activity level than do cells grown on glucose. Among the n-alkanes and fatty acids tested, n-heptadecane, n-octadecane, oleic acid and linoleic acid reduce the enzyme activity to the lowest levels, which are 16-18% of the activity level in glucose-grown cells. Immunochemical titrations and Ouchterlony double-diffusion analysis with specific antibody as well as kinetic studies have indicated that the observed decrease in the level of acetyl-CoA carboxylase activity is due to a reduction in the cellular content of the enzyme. Furthermore, isotopic leucine incorporation studies with the use of the immunoprecipitation technique have demonstrated that the relative rate of synthesis of the enzyme in oleic-acid-grown cells is diminished to 12% of that in glucose-grown cells. Evidence has also been obtained to support the view that the enzyme in this yeast is not degraded at a rate high enough to contribute to the marked decrease in the cellular content of the enzyme. Thus, it is concluded that the reduction in acetyl-CoA carboxylase content in fatty-acid-grown cells is due to diminished synthesis of the enzyme.  相似文献   

2.
Cladosporium resinae was grown in submerged cultures on glucose; on Jet-A commercial aviation fuel; and on a series of n-alkanes, n-decane through n-tetradecane. Cell yield was greatest on glucose and least on Jet-A; n-alkanes were intermediate. Among n-alkanes cell yield decreased as chain length increased, except for n-dodecane, which supported less growth than n-tridecane or n-tetradecane. The total fatty acids of stationary-phase cells were analyzed by gas-liquid chromatography. In all cases the predominant fatty acids were 16:0, 18:1, and 18:2. The fatty acid composition of glucose-grown cells was similar to that of hydrocarbon-grown cells. Cells grown on n-tridecane or n-tetradecane yielded small amounts of acids homologous to the carbon source, but a similar correlation was not noted for n-decane, n-undecane, or n-dodecane. Cells grown on n-undecane or n-tridecane contained more odd-carbon fatty acids than cells grown on the other substrates, and the effect was more pronounced in n-tridecane-grown cells. Thus, the fatty acids of this organism are derived chiefly from de novo synthesis rather than from direct incorporation of oxidized hydrocarbons. The extent of direct incorporation increases as the chain length of the hydrocarbon growth substrate is increased.  相似文献   

3.
The effect of hypolipidemic drugs, WY14643 and DH990, on plant lipid metabolism has been studied. The total incorporation of [14C]acetate into lipids was inhibited by addition of both drugs to aged potato (Solanum tuberosum) tuber discs, spinach (Spinacia oleracea) leaves, and spinach chloroplasts, while the incorporation in Chlorella vulgaris cells was affected only by DH990. Moreover, DH990 inhibited the incorporation of 14C-labeled fatty acids into phosphatidylcholine and phosphatidylethanolamine of potato discs, and decreased the incorporation into phosphatidylglycerol of Chlorella cells. DH990 inhibited the formation of polyunsaturated fatty acids in potato discs, Chlorella cells, and spinach leaves, whereas WY14643 had no effect on the formation of these fatty acids. Stearoyl-ACP desaturase from safflower (Carthamus tinctorius) seeds was very sensitive to both drugs, especially DH990, which completely blocked the activity at 2 mM levels. When safflower lysophospholipid acyltransferases were solubilized by detergent treatment, only DH990 inhibited the incorporation of [14C]oleoyl-CoA into lysophosphatidylcholine or lysophosphatidylethanolamine. Both drugs inhibited fatty acid synthesis from [14C]malonyl-CoA in the microsomal fraction from safflower seeds, but only DH990 inhibited FAS activity in the soluble fraction; both drugs inhibited severely the formation of stearic acid. Both acetyl-CoA carboxylase and acetyl-CoA synthetase were sensitive to both drugs.  相似文献   

4.
The fatty acid pattern in three hydrocarbon-utilizing bacteria during growth on various substrates was examined. The predominant fatty acids in acetate-grown cells were C(16), C(16:1), C(18:1), and Br-C(19) and the major fatty acids in propane-grown cells were C(15), C(17), C(17:1), C(18:1), and Br-C(18). When one organism (Mycobacterium sp. strain OFS) was grown on the n-alkanes from C(13) to C(17), the major fatty acid in the cells was of the same chain length as the substrate. Studies on the incorporation of acetate into the cellular fatty acids of microorganisms growing on C(15) and C(17)n-alkanes suggest that the oxidative products of the substrate are incorporated into the cellular fatty acids without degradation to acetate.  相似文献   

5.
The long-term regulation of fatty acid synthetase and acetyl-CoA carboxylase and of fatty acid and sterol synthesis was studied in C-6 glial cells in culture. When theophylline (10(-3) M) was added to the culture medium of these cells, rates of lipid synthesis from acetate and activities of synthetase and carboxylase became distinctly lower than in cells that were untreated. This effect appeared after approximately 12 h, and after 48 h enzymatic activities were reduced approx. 2-fold and rates of lipid synthesis from acetate 3- to 4-fold. The likelihood that the decrease in fatty acid synthesis from acetate was caused by the decrease in activities of fatty acid synthetase and acetyl-CoA carboxylase was established by several observations. These indicated that the locus of the effect probably did not reside at the level of acetate uptake into the cell, alterations in acetate pool sizes or conversion of acetate to acetyl-CoA. Moreover, de novo fatty acid synthesis was found to be the predominant pathway in these glial cells, whether treated with theophylline or not. The mechanism of the effect of theophylline on fatty acid synthetase was shown by immunochemical techniques to involve an alteration in content of enzyme rather than in catalytic efficiency. The change in content of fatty acid synthetase was shown by isotopic-immunochemical experiments to involve a decrease in synthesis of the enzyme. The mechanism whereby theophylline leads to a decrease in lipogenesis and in the synthesis of fatty acid synthetase may not be mediated entirely by inhibition of phosphodiesterase and an increase in cyclic AMP levels, because dibutyryl cyclic AMP (10(-3) M) only partially reproduced the effect.  相似文献   

6.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

7.
Isolation of Eikenella corrodens in a General Hospital   总被引:7,自引:0,他引:7       下载免费PDF全文
The carbon source markedly influenced the qualitative and quantitative composition of cellular hydrocarbons in Cladosporium resinae. Total lipid and hydrocarbon content was greater in cells grown on n-alkanes than in cells grown on glucose or glutamic acid. Glucose-grown cells contained a spectrum of aliphatic hydrocarbons from C(7) to C(36); pristane and n-hexadecane comprised 98% of the total. Cells grown on glutamic acid contained C(7) to C(23) hydrocarbons; n-tridecane, n-tetradecane, n-hexadecane, and pristane made up 74% of the total. n-Decane-grown cells yielded C(8) to C(32) compounds, and n-hexadecane (96%) was the major hydrocarbon. Cells grown on individual n-alkanes from C(11) to C(15) all contained C(11) to C(28) hydrocarbons, and cells grown on n-hexadecane contained C(11) to C(32) hydrocarbons. In n-undecane-grown cells, n-hexadecane and pristane made up 92% of the total, but in cells grown on C(12) to C(16)n-alkanes the major cellular hydrocarbon was the one on which the cells were grown. This suggests that cells cultured on n-alkanes of C(12) or longer accumulate n-alkanes prior to oxidizing them.  相似文献   

8.
Concentrated cultures of Lactobacillus bulgaricus were prepared by resuspending cells grown in semisynthetic media in sterile 10% non-fat milk solids. The concentrated cultures were frozen in liquid nitrogen for 24 h. The cell suspensions exhibited decreased viability after storage, and the amount of death varied among the different strains tested. Storage stability of all strains examined was improved by supplementing the growth medium with sodium oleate. Radioisotopes were used to study the fate of sodium oleate with L. bulgaricus NCS1. [1-(14)C]sodium oleate was incorporated solely into the lipid portion of the cells, including both neutral and polar lipids. The fatty acid composition of L. bulgaricus NCS1, NCS2, NCS3, and NCS4 grown with and without sodium oleate was studied. The major fatty acids of strains NCS1, NCS2, and NCS3 grown without sodium oleate were dodecanoic, tetradecanoic, hexadecanoic, hexadecenoic, and octadecenoic acids. In addition to these, strain NCS4 contained C(19) cyclopropane fatty acid. The major fatty acids of all strains grown with sodium oleate were tetradecanoic, hexadecanoic, hexadecenoic, octadecenoic, and C(19) cyclopropane fatty acids. All strains grown in broth containing sodium oleate contained larger amounts of octadecenoic and C(19) cyclopropane fatty acid, and less saturated fatty acids than when grown without sodium oleate. Statistical analyses indicated that C(19) cyclopropane fatty acid was most closely related to stability of the lactobacilli in liquid nitrogen. A negative regression line that was significant at P < 0.001 was obtained when the cellular content of this fatty acid was plotted against death.  相似文献   

9.
Microbial biosynthesis of fatty acid like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Wild type E. coli strains produce fatty acids mainly for the biosynthesis of lipids and cell membranes and do not accumulate free fatty acids as intermediates in lipid biosynthesis. However, free fatty acids can be produced by breaking the fatty acid elongation through the overexpression of an acyl-ACP thioesterase. Since acetyl-CoA might be an important factor for fatty acid synthesis (acetate formation pathways are the main competitive pathways in consuming acetyl-CoA or pyruvate, a precursor of acetyl-CoA), and the long chain fatty acid CoA-ligase (FadD) plays a pivotal role in the transport and activation of exogenous fatty acids prior to their subsequent degradation, we examined the composition and the secretion of the free fatty acids in four different strains including the wild type MG1655, a mutant strain with inactivation of the fatty acid beta-oxidation pathway (fadD mutant (ML103)), and mutant strains with inactivation of the two major acetate production pathways (an ack-pta (acetate kinase/phosphotransacetylase), poxB (pyruvate oxidase) double mutant (ML112)) and a fadD, ack-pta, poxB triple mutant (ML115). The engineered E. coli cells expressing acyl-ACP thioesterase with glucose yield is higher than 40% of theoretical yield. Compared to MG1655(pXZ18) and ML103(pXZ18), acetate forming pathway deletion strains such as ML112(pXZ18) and ML115(pXZ18) produced similar quantity of total free fatty acids, which indicated that acetyl-CoA availability does not appear to be limiting factor for fatty acid production in these strains. However, these strains did show significant differences in the composition of free fatty acids. Different from MG1655(pXZ18) and ML103(pXZ18), acetate formation pathway deletion strains such as ML112(pXZ18) and ML115(pXZ18) produced similar level of C14, C16:1 and C16 free fatty acids, and the free fatty acid compositions of both strains did not change significantly with time. In addition, the strains bearing the fadD mutation showed significant differences in the quantities of free fatty acids found in the broth. Finally, we examined two potential screening methods for selecting and isolating high free fatty acids producing cells.  相似文献   

10.
The effects of unsaturated fatty acid deprivation on lipid synthesis in Saccharomyces cerevisiae strain GL7 were determined by following the incorporation of [14C]acetate. Compared to yeast cells grown with oleic acid, unsaturated fatty acid-deprived cells contained 200 times as much 14C label in squalene, with correspondingly less label in 2,3-oxidosqualene and 2,3;22,23-dioxidosqualene. Cells deprived of either methionine or cholesterol did not accumulate squalene, demonstrating that the effect of unsaturated fatty acid starvation on squalene oxidation was not due to an inhibition of cell growth. Cells deprived of olefinic supplements displayed additional changes in lipid metabolism: (i) an increase in 14C-labeled diacylglycerides, (ii) a decrease in 14C-labeled triacylglycerides, and (iii) increased levels of 14C-labeled decanoic and dodecanoic fatty acids. The changes in squalene oxidation and acylglyceride metabolism in unsaturated fatty acid-deprived cells were readily reversed by adding oleic acid. Pulse-chase studies demonstrated that the [14C]squalene and 14C-labeled diacylglycerides which accumulated during starvation were further metabolized when cells were resupplemented with oleic acid. These results demonstrate that unsaturated fatty acids are essential for normal lipid metabolism in yeasts.  相似文献   

11.
Feedback inhibition of fatty acid synthesis in tobacco suspension cells   总被引:7,自引:1,他引:6  
The flux through many metabolic pathways is regulated through feedback inhibition on regulatory enzymes by endproducts of the pathway. Whether feedback inhibition occurs in fatty acid synthesis in plants has been investigated. The addition of exogenous oleic acid, in the form of oleoyl-Tween (Tween-18:1) caused a three- to fivefold decrease in the rate of [1-14C]acetate incorporation into tobacco suspension cell fatty acids. The decrease in acetate incorporation occurred rapidly upon addition of Tween-18:1 and appeared to be specific for fatty acid synthesis. In order to elucidate possible regulatory steps involved in the feedback regulation of fatty acid synthesis in plant cells, tobacco cell acyl-ACP intermediates were analyzed using a combination of [1-14C]acetate labeling and immunoblot analysis. Within 30 min of exogenous lipid addition, acetyl-ACP increased and long chain acyl-ACP decreased, whereas medium chain acyl-ACP levels remained constant. These acyl-ACP profiles observed during the feedback inhibition were those predicted to occur under conditions where the flux through fatty acid synthesis is decreased due to limiting levels of malonyl-CoA and therefore indicated that acetyl-CoA carboxylase (ACCase) was centrally involved in the feedback regulation of fatty acid synthesis. Immunoblot analysis showed that ACCase protein levels did not change during the feedback inhibition, indicating that the feedback inhibition of fatty acid synthesis in plant cells occurs through biochemical or post-translational modification of ACCase and possibly other fatty acid synthesis enzymes.  相似文献   

12.
Lipid synthesis as measured by the incorporation of acetate or 3H2O into slices of foetal liver, is much higher than in slices of adult liver and shows a peak at about two-thirds of gestation. At this time the synthesis from glucose was low and reached a peak 10 days later. The changes in the activity of ATP citrate lyase, which mirrored acetate incorporation, and the effect of glucose and pyruvate on acetate corporation into lipid suggests that some of the lipid synthesis occurs via intramitochondrial acetyl-CoA production from acetate. Despite this, lipid synthesis was not inhibited by (-)-hydroxycitrate. The low rate of synthesis from glucose at two-thirds of gestation is ascribed to the low activity of pyruvate carboxylase at this time and a role for a phosphoenolpyruvate carboxykinase in providing oxaloacetate for lipogenesis is proposed. The activity of fatty acid synthetase broadly agreed with the changes in lipid synthesis, whereas the activity of acetyl-CoA carboxylase was barely sufficient to account for the rates of lipid synthesis in vivo. Acetate and short-chain fatty acids are likely to be the major precursors for lipid synthesis in vivo.  相似文献   

13.
De novo fatty acid synthesis in developing rat lung   总被引:1,自引:0,他引:1  
The rate of de novo fatty acid synthesis in developing rat lung was measured by the rate of incorporation of 3H from 3H2O into fatty acids in lung slices and by the activity of acetyl-CoA carboxylase in fetal, neonatal and adult lung. Both tritium incorporation and acetyl-CoA carboxylase activity increased sharply during late gestation, peaked on the last fetal day, and declined by 50% 1 day after birth. In the adult, values were only one-half the peak fetal rates. In vitro regulation of acetyl-CoA carboxylase activity in fetal lung was similar to that described in adult non-pulmonary tissues: activation by citrate and inhibition by palmitoyl-CoA. Similarly, incubation conditions that favored enzyme phosphorylation inhibited acetyl-CoA carboxylase activity in lung while dephosphorylating conditions stimulated activity. Incorporation of [U-14 C]glucose into lung lipids during development was influenced heavily by incorporation into fatty acids, which generally paralleled the rate of tritium incorporation into fatty acids. The relative utilization of acetyl units from exogenous glucose for overall fatty acid synthesis was greater in adult lung than in fetal or neonatal lung, suggesting that other substrates may be important for fatty acid synthesis in developing lung. In fetal lung explants, de novo fatty acid synthesis was inhibited by exogenous palmitate. Taken together, these data suggest that de novo synthesis may be an important source of saturated fatty acids in fetal lung but of lesser importance in the neonatal period. Furthermore, the regulation of acetyl-CoA carboxylase activity and fatty acid synthesis in lung may be similar to non-pulmonary tissues.  相似文献   

14.
Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1 degrees alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2 degrees alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 micromoles) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1 degrees alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 +/- 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 micromoles) and n-butane (Ki = 16 micromoles) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism.  相似文献   

15.
The distribution of cellular fatty acids in defined lipid classes was analyzed in Micrococcus cerificans after growth on specified hydrocarbons. Neutral lipid, phospholipid, and cell residue fatty acids were qualitatively and quantitatively determined for M. cerificans grown on nutrient broth, tetradecane (C(14)), pentadecane (C(15)), hexadecane (C(16)), and heptadecane (C(17)), respectively. Percentage of total cellular fatty acid localized in defined lipid classes from cells grown on the above growth substrates was (i) neutral lipid-11.8, 1.81, 7.74, 23.1, and 2%; (ii) phospholipid-74.5, 65, 66.43, 62.1, and 86%; (iii) cell residue lipid-13.5, 33.29, 25.82, 14.78, and 11.9%. Phospholipid fatty acid chain length directly reflected the carbon number of the alkane substrate, with 40, 84, 98, and 77% of the fatty acids being 14, 15, 16, and 17 carbons when cells were grown on C(14), C(15), C(16), and C(17)n-alkanes, respectively. The bound lipids of the cell residue after chloroform-methanol extraction were characterized by 2-hydroxydodecanoic and 2-hydroxytetradecanoic acids plus a broad spectrum of fatty acids ranging from C(10) to C(17) chain length. An increase in total unsaturated fatty acid localized in the phospholipids was noted from cells grown on alkanes greater than 15 carbons long. An extracellular accumulation of free fatty acid (FFA) was demonstrated in hexadecane-grown cultures that was not apparent in non-hydrocarbon-grown cultures. Identification of extracellular FFA demonstrated direct derivation from hexadecane oxidation. Studies supporting inhibition of de novo fatty acid biosynthesis in relationship to extracellular FFA and hexadecane oxidation are described. The ability to alter the fatty acid composition of membrane polar lipids in a predictable manner by the alkane carbon source provides an excellent model system for the investigation of membrane structure-function relationships in M. cerificans.  相似文献   

16.
Abstract— C6 glial cells in culture were utilized to study the regulation of the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and the synthesis of fatty acids and sterols. Regulation of these phenomena by lipid was demonstrated by the following observations. First, removal of serum from the culture medium was accompanied over the next five days by 2–3-fold increases in the lipogenic enzymatic activities and in 5–15-fold increases in rates of incorporation of acetate into fatty acids and sterols. Second, cells grown in delipidated serum exhibited approx 2-fold higher levels of activity of the lipogenic enzymes and 5–10-fold higher rates of synthesis of fatty acids and sterols than cells grown in normal calf serum. Third, cells grown in serum-free medium supplemented with concentrations of fatty acid comparable to those present in medium supplemented with serum exhibited activities of fatty acid synthetase comparable to those exhibited by cells grown in the serum-supplemented medium. The mechanism of these effects on fatty acid synthetase was shown by immunochemical techniques to involve alterations in content rather than in catalytic efficiency of the enzyme. The changes in content of the synthetase were caused by alterations in enzyme synthesis. In view of morphological and biochemical data suggesting that C6 cells are related to differentiating cells with properties of both astrocytes and oligodendroglia, the present data may indicate that regulation of palmitic acid synthesis by fatty acid or a product thereof occurs in brain during development.  相似文献   

17.
Fatty acid synthesis was studied in freshly isolated type II pneumocytes from rabbits by 3H2O and (U-14C)-labeled glucose, lactate and pyruvate incorporation and the activity of acetyl-CoA carboxylase. The rate of lactate incorporation into fatty acids was 3-fold greater than glucose incorporation; lactate incorporation into the glycerol portion of lipids was very low but glucose incorporation into this fraction was approximately equal to incorporation into fatty acids. The highest rate of de novo fatty acid synthesis (3H2O incorporation) required both glucose and lactate. Under these circumstances lactate provided 81.5% of the acetyl units while glucose provided 5.6%. Incubations with glucose plus pyruvate had a significantly lower rate of fatty acid synthesis than glucose plus lactate. The availability of exogenous palmitate decreased de novo fatty acid synthesis by 80% in the isolated cells. In a cell-free supernatant, acetyl-CoA carboxylase activity was almost completely inhibited by palmitoyl-CoA; citrate blunted this inhibition. These data indicate that the type II pneumocyte is capable of a high rate of de novo fatty acid synthesis and that lactate is a preferred source of acetyl units. The type II pneumocyte can rapidly decrease the rate of fatty acid synthesis, probably by allosteric inhibition of acetyl-CoA carboxylase, if exogenous fatty acids are available.  相似文献   

18.
The antibiotic resistance and lipid composition of rhodococci grown in rich organic media with gaseous or liquid n-alkanes were studied. Hydrocarbon-grown rhodococci exhibited an increased resistance to a wide range of antibiotics (aminoglycosides, linkosamides, macrolides, beta-lactams, and aromatic compounds). The enhanced antibiotic resistance of rhodococci grown on n-alkanes correlated with an increased content of total cell lipids (up to 14-28%) and saturated straight-chain fatty acids (C16:0, C18:0, C21:0) and was accompanied by the appearance of cardiolipin and phosphatidylglycerol in cells. These lipid compounds were supposed to promote the formation of nonspecific antibiotic resistance in rhodococci by decreasing the permeability of their cell envelope to antibiotics.  相似文献   

19.
1. The in vitro basal lipid metabolism of rat pancreatic fragments was compared with that in adipose tissue fragments and liver slices. 2. [1-14C]Acetate added to the media was mostly incorporated into palmitic acid and to a lesser extent into oleic acid. In addition, pancreatic tissue exhibited a marked capacity for elongation of polyunsaturated fatty acids by [1-14C]acetate and resulting desaturation when compared to adipose tissue and liver. 3. Data obtained in the presence of [U-14C]glucose, [1-14C]palmitate and 3H20 indicate that acetyl-CoA derived from glucose and from beta-oxidation of fatty acids contributed to de novo lipogenesis. 4. Oxidation of [1-14C]palmitic acid was 9-13 times higher in the pancreas than in adipose tissue or liver when expressed on a wet weight basis. 5. The fatty acid moiety of pancreatic glycerolipids could be derived from de novo synthesis, fatty acids added to the medium, or from fatty acids formed from the hydrolysis of endogenous lipids. The glycerol moiety could be derived either from glucose, or directly from glycerol through participation of glycerol kinase.  相似文献   

20.
T Kurihara  M Ueda  A Tanaka 《FEBS letters》1988,229(1):215-218
Two kinds of 3-ketoacyl-CoA thiolases were found in the peroxisomes of Candida tropicalis cells grown on n-alkanes (C10-C13). One was a typical acetoacetyl-CoA thiolase specific only to acetoacetyl-CoA, while another was 3-ketoacyl-CoA thiolase showing high activities on the longer chain substrates. A high level of the latter thiolase activity in alkane-grown cells was similar to that of other enzymes constituting the fatty acid beta-oxidation system in yeast peroxisomes. These facts suggest that the complete degradation of fatty acids to acetyl-CoA is carried out in yeast peroxisomes by the cooperative contribution of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号