首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In basic and applied myology, gel-based proteomics is routinely used for studying global changes in the protein constellation of contractile fibers during myogenesis, physiological adaptations, neuromuscular degeneration, and the natural aging process. Since the main proteins of the actomyosin apparatus and its auxiliary sarcomeric components often negate weak signals from minor muscle proteins during proteomic investigations, we have here evaluated whether a simple prefractionation step can be employed to eliminate certain aspects of this analytical obstacle. To remove a large portion of highly abundant contractile proteins from skeletal muscle homogenates without the usage of major manipulative steps, differential centrifugation was used to decisively reduce the sample complexity of crude muscle tissue extracts. The resulting protein fraction was separated by two-dimensional gel electrophoresis, and 2D-landmark proteins were identified by mass spectrometry. To evaluate the suitability of the contractile-protein-depleted fraction for comparative proteomics, normal versus dystrophic muscle preparations were examined. The mass spectrometric analysis of differentially expressed proteins, as determined by fluorescence difference in-gel electrophoresis, identified 10 protein species in dystrophic mdx hindlimb muscles. Interesting new biomarker candidates included Hsp70, transferrin, and ferritin, whereby their altered concentration levels in dystrophin-deficient muscle were confirmed by immunoblotting.  相似文献   

2.
3.
4.1R pre-mRNA alternative splicing results in multiple mRNA and protein isoforms that are expressed in virtually all tissues. More specifically, isoforms containing the alternative exon 17a, are exclusively expressed in muscle tissues. In this report, we show that these isoforms are preferentially present in the myoplasm of fast myofibres. 4.1R epitopes are also found at the sarcolemma of both slow and fast myofibres in normal muscle. Interestingly, they are absent from dystrophin-deficient sarcolemma of DMD muscle, and colocalize with partially expressed dystrophin in BMD muscle. We also show that alternative splicing of exons 16 and 17a is regulated during muscle differentiation in an asynchronous fashion, with an early inclusion of exon 16 in forming myotubes, and a late inclusion of exon 17a. Consistently, Western blot analysis led to characterize mainly an approximately 96/98-kDa doublet bearing exons 16-17a-encoding peptide, exclusively occurring in the differentiated muscle.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The specific radioactivity of [3H]Leu in the extracellular, intracellular, and Leu-tRNA pools of normal (white leghorn) and dystrophic (line 307) embryonic chick breast muscle cultures was analyzed as a function of equilibration time and extracellular Leu concentration (0.05-5 mM). The primary results were the following 1) [3H]Leu equilibrated to a constant specific radioactivity in the intracellular and Leu-tRNA pools within 2 min after addition to both normal and dystrophic cultures. 2) After equilibration, the extracellular [3H] Leu specific radioactivity in dystrophic cell culture medium was lower than that of medium exposed to normal cells (especially at low Leu concentrations), probably because of increased release of unlabeled Leu from the dystrophic cells as a result of faster protein breakdown. Accordingly, the specific radioactivities in the intracellular and the Leu-tRNA pools were also lower in dystrophic cells. 3) At 5 mM extracellular Leu, the specific radioactivity in the Leu-tRNA pool was approximately 40% lower than the specific radioactivity in the intracellular pool in both normal and dystrophic cells. Thus, high concentrations of extracellular Leu cannot be used to "flood out" reutilization of unlabeled Leu (released by protein degradation) during protein synthesis. 4) At 5.0 mM extracellular Leu, the specific radioactivity of [3H]Leu in the intracellular pool was comparable to that in the extracellular pool in normal and dystrophic cells; however, the specific radioactivity of Leu-tRNA (i.e. the immediate precursor to protein synthesis) was only 55-65% of the extracellular specific radioactivity in normal and dystrophic cells. In conclusion, reutilization of Leu from protein degradation is higher in dystrophic muscle cell cultures than in normal muscle cell cultures, and accurate rates of protein synthesis in cell cultures can only be obtained if specific radioactivity of amino acid in tRNA is measured.  相似文献   

11.
Human muscle cells obtained from biopsy specimens were grown in a primary culture system and electrophysiologically studied. Whole cell patch-clamp recordings revealed the presence of two types of calcium currents: (i) a low-threshold (-60 mV) one (ICa, T) with fast activation and inactivation kinetics (time-to-peak: 39 ms at -30 mV); and (ii) a high-threshold (-10 mV) one (ICa,L) with slower kinetics (time-to-peak: 550 ms at 20 mV). These two types of calcium currents could be also distinguished by their pharmacological characteristics since ICa,L was sensitive to the antagonist and agonist dihydropyridine derivatives contrary to ICa,T which was completely resistant to these compounds. These functional calcium channels existed both in normal and Duchenne dystrophic (DMD) human skeletal muscle cells in culture. We discuss a possible role of these two types of calcium channels in the myoplasmic calcium accumulation observed in the Duchenne muscular dystrophy.  相似文献   

12.
Mitochondrial respiration and oxidative phosphorylation were compared in normal and dystrophic mouse skeletal muscles. To obtain the maximum respiration control ratio (RCR) and adenosine diphosphate/oxygen (ADP/O) ratio from isolated muscle mitochondria, it is found that there is an advantage in having a low concentration of proteinase and EGTA present in the medium during preparation of mitochondria by centrifugation fractionation. Using pyruvate, acetylcarnitine, and palmitylcarnitine as substrates for oxidation, a highly significant reduction (40-60%) is shown in oxygen uptake by dystrophic muscle mitochondria as compared to normal muscle mitochondria. Studies of the integrity of the oxidative phosphorylation apparatus in these samples showed that there is a reduction of the RCR and ADP/O ratio in dystrophic muscle mitochondria as compared to normal muscle mitochondria.  相似文献   

13.
Soluble cholinesterase of muscle from dystrophic and normal mice   总被引:1,自引:0,他引:1  
S C Sung 《Life sciences》1978,23(1):69-73
The percentage of cholinesterase extractable by isotonic sucrose from dystrophic mouse muscle was greater than that found in normal muscle. Of the total cholinesterase found in normal and dystrophic muscle about 60% was specific AChE and 40% was non-specific cholinesterase. The extract from dystrophic muscle showed, on sucrose sedimentation, one major peak of AChE activity with a sedimentation constant of approximately 4.3 S. This was much higher than that from normal muscle.  相似文献   

14.
Sarcolemmal membranes were isolated from porcine skeletal muscle by modifications of a LiBr-extraction technique. Latency determinations of acetylcholinesterase, ouabain-sensitive p-nitrophenylphosphatase, [3H]ouabain binding, and (Na+ + K+)-ATPase activities indicated that 65-76% of the membranes were sealed inside-out vesicles. The preparations were enriched in cholesterol and phospholipid, and demonstrated adenylate cyclase activity and both cAMP and cGMP phosphodiesterase activities. An indication of the purity of this fraction was that the Ca2+-ATPase activity (0.13 mumol Pi mg-1 min-1 at 37 degrees C) was 3.8% of that of porcine skeletal muscle sarcoplasmic reticulum preparations. Pertussis toxin specifically catalyzed the ADP-ribosylation of a Mr 41,000 sarcolemmal protein, indicating the presence of the inhibitory guanine nucleotide regulatory protein of adenylate cyclase, Ni. An endogenous ADP-ribosyltransferase activity, with several membrane protein substrates, was also demonstrated. The addition of exogenous cAMP-dependent protein kinase or calmodulin promoted the phosphorylation of a number of sarcolemmal proteins. The calmodulin-dependent phosphorylation exhibited an approximate K 1/2 for Ca2+ of 0.5 microM, and an approximate K 1/2 for calmodulin of 0.1 microM. 125I-Calmodulin affinity labeling of the sarcolemma, using dithiobis(succinimidyl propionate), demonstrated the presence of Mr 160,000 and 280,000 calmodulin-binding components in these membranes. These results demonstrate that this porcine preparation will be valuable in the study of skeletal muscle sarcolemmal ion transport, protein and hormonal receptors, and protein kinase-catalyzed phosphorylation.  相似文献   

15.
Summary Dystrophin is the product of the Duchenne muscular dystrophy (DMD) gene. Dystrophin-related protein (utrophin), an autosomal homologue of dystrophin, was studied in skeletal muscle from normal fetuses aged 9–26 weeks and one stillbirth of 41 weeks' gestation, and compared with low- and high-risk DMD fetuses aged 9–20 weeks. Utrophin was present at the sarcolemma from before 9 weeks' gestation, although there was variability in intensity both within and between myotubes. Sarcolemmal immunolabelling became more uniform, and levels of utrophin increased to a maximum at approximately 17–18 weeks. Levels then declined, until by 26 weeks sarcolemmal labelling was negligible and levels were similar to adult control muscle. By 41 weeks there was virtually no sarcolemmal labelling, although immunolabelling of capillaries was bright. Similar results were obtained with normal and DMD fetal muscle. Utrophin is therefore expressed in the presence and absence of dystrophin and down-regulated before birth in normal fetal muscle fibres. Samples were not available to determine whether or when, utrophin levels decline in DMD fetal muscle. On Western blots, utrophin was shown to have a smaller relative molecular mass than adult dystrophin, but similar to the fetal isoform. Blood vessels were brightly immunolabelled at all ages, although utrophin immunolabelling of peripheral nerves increased with gestational age.  相似文献   

16.
17.
Muscular dystrophies are a clinically and genetically heterogeneous group of disorders that show myofiber degeneration and regeneration. Identification of animal models of muscular dystrophy has been instrumental in research on the pathogenesis, pathophysiology, and treatment of these disorders. We review our understanding of the functional status of dystrophic skeletal muscle from selected animal models with a focus on 1) the mdx mouse model of Duchenne muscular dystrophy, 2) the Bio 14.6 delta-sarcoglycan-deficient hamster model of limb-girdle muscular dystrophy, and 3) transgenic null mutant murine lines of sarcoglycan (alpha, beta, delta, and gamma) deficiencies. Although biochemical data from these models suggest that the dystrophin-sarcoglycan-dystroglycan-laminin network is critical for structural integrity of the myofiber plasma membrane, emerging studies of muscle physiology suggest a more complex picture, with specific functional deficits varying considerably from muscle to muscle and model to model. It is likely that changes in muscle structure and function, downstream of the specific, primary biochemical deficiency, may alter muscle contractile properties.  相似文献   

18.
Glycosaminoglycans were isolated from the skeletal muscle of either normal or dystrophic mice aged from 3 to 18 weeks. The glycosaminoglycan content of the normal muscle, based on the tissue weight, decreased slightly during the period from 3 to 10 weeks, and remained almost unchanged after 10 weeks. The major glycosaminoglycan in normal muscle was hyaluronate, the relative amount of which increased slightly (from 70% to 80%) with age. Both dermatan sulfate and heparan sulfate were also obtained. The relative amounts of these sulfated glycosaminoglycans tended to decrease with age. On the other hand, the glycosaminoglycan content of the dystrophic muscle was higher than that of normal muscle even at 3 weeks. The proportion of hyaluronate was almost constant (about 65%) throughout the age range examined. The relative amount of dermatan sulfate increased from 20% to 30% with a compensatory decrease in the amount of heparan sulfate. Further, the incorporation of [35S]sulfate into glycosaminoglycans by the dystrophic muscle was reduced to about 60% of the normal. These differences in glycosaminoglycan composition and [35S]sulfate incorporation between the normal and the dystrophic muscles may be related to the progressive muscular dysfunction seen in this disease.  相似文献   

19.
Binding of cations by microsomes from rabbit skeletal muscle   总被引:6,自引:0,他引:6  
Fragmented sarcoplasmic reticulum and transverse tubular system, as isolated in the microsomal fraction from rabbit skeletal muscle, bind H+, Na+, K+, Ca++, Mg++, and Zn++. The binding depends on a cation exchange type of interaction between these cations and the chemical components of the membranous systems of the muscle cell. The monovalent and divalent cations exchange quantitatively for each other at the binding sites on an equivalent basis. Scatchard plots of the H+ binding data indicate that the binding groups can be resolved into two major components in terms of their pK values. Component 1 has a pK value of 6.6 and a capacity for H+ binding of 2.2 meq/g N . The second component has a much higher H+ binding capacity (7–8 meq/g N ), but its pK value, 3.4, is non-physiological. The binding of cations other than H+ at a neutral pH occurs at the binding sites making up component 1. The order of affinity of the cations for the microsome binding sites is H+ » Zn++ > Ca++ > Mg++ » Na+ = K+ as reflected by the apparent respective pKM values: 6.6, 5.2, 4.7, 4.2, 1.3, 1.3. Caffeine, which causes contracture and potentiates the twitch of skeletal muscle, does not interfere with the binding of Ca++ by the microsomes at neutral pH.  相似文献   

20.
The myosin of developing and dystrophic skeletal muscle   总被引:3,自引:0,他引:3  
H A John 《FEBS letters》1974,39(3):278-282
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号