首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
We screened a collection of 4847 haploid knockout strains (EUROSCARF collection) of Saccharomyces cerevisiae for iron uptake from the siderophore ferrioxamine B (FOB). A large number of mutants showed altered uptake activities, and a few turned yellow when grown on agar plates with added FOB, indicating increased intracellular accumulation of undissociated siderophores. A subset consisting of 197 knockouts with altered uptake was examined further for regulated activities that mediate cellular uptake of iron from other siderophores or from iron salts. Hierarchical clustering analysis grouped the data according to iron sources and according to mutant categories. In the first analysis, siderophores grouped together with the exception of enterobactin, which grouped with iron salts, suggesting a reductive pathway of iron uptake for this siderophore. Mutant groupings included three categories: (i) high-FOB uptake, high reductase, low-ferrous transport; (ii) isolated high- or low-FOB transport; and (iii) induction of all activities. Mutants with statistically altered uptake activities included genes encoding proteins with predominant localization in the secretory pathway, nucleus, and mitochondria. Measurements of different iron-uptake activities in the yeast knockout collection make possible distinctions between genes with general effects on iron metabolism and those with pathway-specific effects.  相似文献   

8.
9.
10.
11.
12.
Metal transporters regulated by iron can transport a variety of divalent metals, suggesting that iron regulation is important for specificity of iron transport. In plants, the iron-regulated broad-range metal transporter IRT1 is required for uptake of iron into the root epidermis. Functions of other iron-regulated plant metal transporters are not yet established. To deduce novel plant iron transport functions we studied the regulation of four tomato metal transporter genes belonging to the nramp and irt families with respect to environmental and genetic factors influencing iron uptake. We isolated Lenramp1 and Lenramp3 from tomato and demonstrate that these genes encode functional NRAMP metal transporters in yeast, where they were iron-regulated and localized mainly to intracellular vesicles. Lenramp1 and Leirt1 revealed both root-specific expression and up-regulation by iron deficiency, respectively, in contrast to Leirt2 and Lenramp3. Lenramp1 and Leirt1, but not Lenramp3 and Leirt2, were down-regulated in the roots of fer mutant plants deficient in a bHLH gene regulating iron uptake. In chloronerva mutant plants lacking the functional enzyme for synthesis of the plant-specific metal chelator nicotianamine Leirt1 and Lenramp1 were up-regulated despite sufficient iron supply independent of a functional fer gene. Lenramp1 was expressed in the vascular root parenchyma in a similar cellular pattern as the fer gene. However, the fer gene was not sufficient for inducing Lenramp1 and Leirt1 when ectopically expressed. Based on our results, we suggest a novel function for NRAMP1 in mobilizing iron in the vascular parenchyma upon iron deficiency in plants. We discuss fer/nicotianamine synthase-dependent and -independent regulatory pathways for metal transporter gene regulation.  相似文献   

13.
14.
We have used the yeast Saccharomyces cerevisiae as a model organism to study the role of ferric iron reduction in eucaryotic iron uptake. S. cerevisiae is able to utilize ferric chelates as an iron source by reducing the ferric iron to the ferrous form, which is subsequently internalized by the cells. A gene (FRE1) was identified which encodes a protein required for both ferric iron reduction and efficient ferric iron assimilation, thus linking these two activities. The predicted FRE1 protein appears to be a membrane protein and shows homology to the beta-subunit of the human respiratory burst oxidase. These data suggest that FRE1 is a structural component of the ferric reductase. Subcellular fractionation studies showed that the ferric reductase activity of isolated plasma membranes did not reflect the activity of the intact cells, implying that cellular integrity was necessary for function of the major S. cerevisiae ferric reductase. An NADPH-dependent plasma membrane ferric reductase was partially purified from plasma membranes. Preliminary evidence suggests that the cell surface ferric reductase may, in addition to mediating cellular iron uptake, help modulate the intracellular redox potential of the yeast cell.  相似文献   

15.
Molecular mechanisms of iron uptake in fungi   总被引:12,自引:0,他引:12  
Fungi, like all free-living organisms, are in competition for limiting nutrients. In accumulating iron, fungi are faced also with a trace metal whose aqueous and redox chemistry make it both relatively bio-unavailable and strongly cytotoxic. Successful adaptation to this environmental context has provided fungi with an iron uptake strategy that has three features: it relies on redox cycling to enhance iron bio-availability and reduce iron cytotoxicity; it includes both high- and low-affinity pathways that are mechanistically distinct; and it is autoregulating so as to maintain intracellular iron homeostasis. Using Saccharomyces cerevisiae as a paradigm, this review summarizes current knowledge about the four pathways by which this yeast accumulates iron. These four pathways include: siderophore iron accumulation; high affinity iron uptake via an iron permease; and two lower affinity uptake pathways through relatively non-specific divalent metal ion transporters. All of these four pathways are directly or indirectly dependent on the activity of metalloreductase activity expressed extracellularly on the plasma membrane. A variety of experimental and genomics data indicate that this resourcefulness is shared by many, if not most, fungi. On the other hand, while the autoregulation of iron metabolism in Baker's yeast is well-understood, little is known about the apparent homeostatic mechanisms in these other yeasts and fungi. The integration of these multiple uptake mechanisms and their regulation into over-all iron homeostasis in yeast concludes this brief review.  相似文献   

16.
17.
《Cell》1994,76(2):403-410
S. cerevisiae accumulate iron by a process requiring a ferrireductase and a ferrous transporter. We have isolated a mutant, fet3, defective for high affinity Fe(II) uptake. The wild-type FET3 gene was isolated by complementation of the mutant defect. Sequence analysis of the gene revealed the presence of an open reading frame coding for a protein with strong similarity to the family of blue multicopper oxidoreductases. Consistent with the role of copper in iron transport, growth of wild-type cells in copper-deficient media resulted in decreased ferrous iron transport. Addition of copper, but not other transition metals (manganese or zinc), to the assay media resulted in the recovery of Fe(II) transporter activity. We suggest that the catalytic activity of the Fet3 protein is required for cellular iron accumulation.  相似文献   

18.
19.
Iron reduction and uptake was studied in wild-type and haem-deficient strains of Saccharomyces cerevisiae. Haem-deficient strains lacked inducible ferri-reductase activity and were unable to take up iron from different ferric chelates such as Fe(III)-citrate or rhodoturulic acid. In contrast, ferrioxamine B was taken up actively by the mutants as well as by the wild-type strains. At a low extracellular concentration, uptake was insensitive to ferrozine and competitively inhibited by Ga(III)-desferrioxamine B. Extracellular reductive dissociation of the siderophore occurred at higher extracellular concentrations. Two mechanisms appear to contribute to the uptake of ferrioxamine B by S. cerevisiae: one with high affinity, by which the siderophore is internalized as such and another with lower affinity by which iron is dissociated from the ligand prior to uptake.  相似文献   

20.
Iron uptake studies in Bifidobacterium bifidum var. pennsylvanicus were carried out using ferric citrate at iron concentrations above 0.01 mM and pH 7, ferrous iron at concentrations less than 0.01 mM at pH 5. Two ferric iron transport systems were distinguished: the temperature-insensitive polymer, and the temperature-sensitive monomer uptake. Both showed a saturation phenomenon. The transport of ferrous iron at concentrations below 0.01 mM was temperature-dependent, and its affinity for iron was higher than that of a system operating at iron concentrations higher than 0.01 mM. The use of various metabolic inhibitors indicated that ferrous iron transport at pH 5 at both high and low iron concentrations was mediated by transport-type ATPase. Proton gradient dissipators abolished ferrous iron uptakes as well as the ferric monomer uptake. Uptake of the ferric polymer was insensitive to metabolic inhibitors. The functional significance of the various types of iron transport systems may be related to the nutritional immunity phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号