首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
3.
The activation function 2/ligand-dependent interaction between nuclear receptors and their coregulators is mediated by a short consensus motif, the so-called nuclear receptor (NR) box. Nuclear receptors exhibit distinct preferences for such motifs depending both on the bound ligand and on the NR box sequence. To better understand the structural basis of motif recognition, we characterized the interaction between estrogen receptor alpha and the NR box regions of the p160 coactivator TIF2. We have determined the crystal structures of complexes between the ligand-binding domain of estrogen receptor alpha and 12-mer peptides from the Box B2 and Box B3 regions of TIF2. Surprisingly, the Box B3 module displays an unexpected binding mode that is distinct from the canonical LXXLL interaction observed in other ligand-binding domain/NR box crystal structures. The peptide is shifted along the coactivator binding site in such a way that the interaction motif becomes LXXYL rather than the classical LXXLL. However, analysis of the binding properties of wild type NR box peptides, as well as mutant peptides designed to probe the Box B3 orientation, suggests that the Box B3 peptide primarily adopts the "classical" LXXLL orientation in solution. These results highlight the potential difficulties in interpretation of protein-protein interactions based on co-crystal structures using short peptide motifs.  相似文献   

4.
5.
The androgen receptor is unusual among nuclear receptors in that most, if not all, of its activity is mediated via the constitutive activation function in the N terminus. Here we demonstrate that p160 coactivators such as SRC1 (steroid receptor coactivator 1) interact directly with the N terminus in a ligand-independent manner via a conserved glutamine-rich region between residues 1053 and 1123. Although SRC1 is capable of interacting with the ligand-binding domain by means of LXXLL motifs, this interaction is not essential since an SRC1 mutant with no functional LXXLL motifs retains its ability to potentiate androgen receptor activity. In contrast, mutants lacking the glutamine-rich region are inactive, indicating that this region is both necessary and sufficient for recruitment of SRC1 to the androgen receptor. This recruitment is in direct contrast to the recruitment of SRC1 to the estrogen receptor, which requires interaction with the ligand-binding domain.  相似文献   

6.
7.
The tyrosine-based activation motif is a 20- to 25-amino-acid sequence contained in the cytoplasmic domains of many hematopoietic receptors which is sufficient by itself to reconstitute signalling. This motif is characterized by two YXXL/I sequences separated by approximately 10 residues. The molecular basis of signalling by this motif is unknown. Here we demonstrate that the tyrosine-based activation motif is required and sufficient for association with the tyrosine kinases p59fyn and ZAP-70, suggesting that association with these kinases is a general feature of this motif. Focusing on the single activation motif present in epsilon, we analyzed which residues of the motif were critical for binding of p59fyn and ZAP-70. Surprisingly, we found that no single mutation of any residue of epsilon resulted in the loss of p59fyn association. In contrast, single mutations at five residues of the epsilon activating motif abrogated ZAP-70 binding. Both of the tyrosines and the leucine or isoleucine residues that follow them were critical. The spacing between the tyrosines was also important, as deletion of two residues disrupted binding of ZAP-70, although p59fyn binding was not disrupted. Most of the defined features of the tyrosine activation motif are therefore requirements for ZAP-70 binding. Interestingly, the interaction of ZAP-70 with the motif was dependent on the presence of both ZAP-70 SH2 domains and both of the tyrosine residues in the motif, suggesting that ZAP-70 interacts with two phosphotyrosine residues and that the binding of the two SH2 domains is cooperative. In addition, we demonstrate that the interaction between the tyrosine activation motif is direct and requires prior tyrosine phosphorylation of the motif. We propose that the activation of cells by the tyrosine activating motif occurs in four discrete steps: binding of p59fyn, phosphorylation of the motif, binding of ZAP-70, and activation of ZAP-70 kinase activity.  相似文献   

8.
Gene activation by steroid hormone receptors involves the recruitment of the steroid receptor coactivator (SRC)/p160 coactivator LXXLL motifs to activation function 2 (AF2) in the ligand binding domain. For the androgen receptor (AR), AF2 also serves as the interaction site for the AR NH(2)-terminal FXXLF motif in the androgen-dependent NH(2)-terminal and carboxyl-terminal (N/C) interaction. The relative importance of the AR AF2 site has been unclear, since the AR FXXLF motif interferes with coactivator recruitment by competitive inhibition of LXXLL motif binding. In this report, we identified the X chromosome-linked melanoma antigen gene product MAGE-11 as an AR coregulator that specifically binds the AR NH(2)-terminal FXXLF motif. Binding of MAGE-11 to the AR FXXLF alpha-helical region stabilizes the ligand-free AR and, in the presence of an agonist, increases exposure of AF2 to the recruitment and activation by the SRC/p160 coactivators. Intracellular association between AR and MAGE-11 is supported by their coimmunoprecipitation and colocalization in the absence and presence of hormone and by competitive inhibition of the N/C interaction. AR transactivation increases in response to MAGE-11 and the SRC/p160 coactivators through mechanisms that include but are not limited to the AF2 site. MAGE-11 is expressed in androgen-dependent tissues and in prostate cancer cell lines. The results suggest MAGE-11 is a unique AR coregulator that increases AR activity by modulating the AR interdomain interaction.  相似文献   

9.
10.
11.
12.
One class of the nuclear receptor AF-2 coactivator complexes contains the SRC-1/TIF2 family, CBP/p300 and an RNA coactivator, SRA. We identified a subfamily of RNA-binding DEAD-box proteins (p72/p68) as a human estrogen receptor alpha (hER alpha) coactivator in the complex containing these factors. p72/p68 interacted with both the AD2 of any SRC-1/TIF2 family protein and the hER alpha A/B domain, but not with any other nuclear receptor tested. p72/p68, TIF2 (SRC-1) and SRA were co-immunoprecipitated with estrogen-bound hER alpha in MCF7 cells and in partially purified complexes associated with hER alpha from HeLa nuclear extracts. Estrogen induced co-localization of p72 with hER alpha and TIF2 in the nucleus. The presence of p72/p68 potentiated the estrogen-induced expression of the endogenous pS2 gene in MCF7 cells. In a transient expression assay, a combination of p72/p68 with SRA and one TIF2 brought an ultimate synergism to the estrogen-induced transactivation of hER alpha. These findings indicate that p72/p68 acts as an ER subtype-selective coactivator through ER alpha AF-1 by associating with the coactivator complex to bind its AF-2 through direct binding with SRA and the SRC-1/TIF2 family proteins.  相似文献   

13.
14.
15.
16.
17.
The interaction of coactivators with the ligand-binding domain of nuclear receptors (NRs) is mediated by amphipathic alpha-helices containing the signature motif LXXLL. TRAP220 contains two LXXLL motifs (LXM1 and LXM2) that are required for its interaction with NRs. Here we show that the nuclear receptor interaction domain (NID) of TRAP220 interacts weakly with Class I NRs. In contrast, SRC1 NID binds strongly to both Class I and Class II NRs. Interaction assays using nine amino acid LXXLL core motifs derived from SRC1 and TRAP220 revealed no discriminatory NR binding preferences. However, an extended LXM1 sequence containing amino acids -4 to +9, (where the first conserved leucine is +1) showed selective binding to thyroid hormone receptor and reduced binding to estrogen receptor. Replacement of either TRAP220 LXXLL motif with the corresponding 13 amino acids of SRC1 LXM2 strongly enhanced the interaction of the TRAP220 NID with the estrogen receptor. Mutational analysis revealed combinatorial effects of the LXM1 core and flanking sequences in the determination of the NR binding specificity of the TRAP220 NID. In contrast, a mutation that increased the spacing between TRAP220 LXM1 and LXM2 had little effect on the binding properties of this domain. Thus, a 13-amino acid sequence comprising an extended LXXLL motif acts as the key determinant of the NR binding specificity of TRAP220. Finally, we show that the NR binding specificity of full-length TRAP220 can be altered by swapping extended LXM sequences.  相似文献   

18.
19.
20.
Upon hormone binding, a hydrophobic coactivator binding groove is induced in the androgen receptor (AR) ligand-binding domain (LBD). This groove serves as high affinity docking site for alpha-helical FXXLF motifs present in the AR N-terminal domain and in AR cofactors. Study of the amino acid requirements at position +4 of the AR FXXLF motif revealed that most amino acid substitutions strongly reduced or completely abrogated AR LBD interaction. Strong interactions were still observed following substitution of Leu+4 by Phe or Met residues. Leu+4 to Met or Phe substitutions in the FXXLF motifs of AR cofactors ARA54 and ARA70 were also compatible with strong AR LBD binding. Like the corresponding FXXLF motifs, interactions of FXXFF and FXXMF variants of AR and ARA54 motifs were AR specific, whereas variants of the less AR-selective ARA70 motif displayed increased AR specificity. A survey of currently known AR-binding proteins revealed the presence of an FXXFF motif in gelsolin and an FXXMF motif in PAK6. In vivo fluorescence resonance energy transfer and functional protein-protein interaction assays showed direct, efficient, and specific interactions of both motifs with AR LBD. Mutation of these motifs abrogated interaction of gelsolin and PAK6 proteins with AR. In conclusion, we have demonstrated strong interaction of FXXFF and FXXMF motifs to the AR coactivator binding groove, thereby mediating specific binding of a subgroup of cofactors to the AR LBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号