首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
The maturation of the ability of the B-cell population to re-express surface immunoglobulin (sIg) after its removal by treatment with rabbit anti-mouse immunoglobulin (RAMIg) was studied in LAF1, C57BL/6, and C57L mice. As demonstrated by previous workers, the B-cell population from immature mice failed to re-express sIg after treatment with RAMIg. We have shown that the age at which the B-cell population acquires the capacity to re-express sIg is different in different strains and that the order in which the B-cell population of the different strains acquires the capacity to re-express sIg is different from the order in which their B-cell populations acquire the capacity to produce high-affinity antibodies. This suggests that these represent distinct differentiation events in the development of the B-cell population. In all of the strains studied the maturation of the capacity to re-express sIg occurred in two steps. After the first maturation step the B-cell population was able to re-express sIg after treatment with RAMIg for 1 hr but did not re-express sIg after treatment with RAMIg for 24 hr. After the second maturation step the B-cell population could re-express sIg even after 24 hr treatment with RAMIg. It has been suggested by previous workers that the inability of the immature B-cell population to re-express sIg could represent one of the mechanisms responsible for the development of B-cell self-tolerance. It is suggested here that the existence of a period during which cells become tolerant only upon prolonged exposure to antigen could protect the developing B cells from becoming unresponsive to transiently experienced foreign antigens but still permit them to become tolerant to self antigens which are continuously present.  相似文献   

2.
M E Weksler  G W Siskind 《Life sciences》1974,15(11):1875-1886
A variety of experimental conditions have been described which can selectively depress various aspects of the normal immune response. Treatment with cytotoxic drugs or variations in the route of administration or physical state of the antigen can selectively depress one immunoglobulin class while allowing normal synthesis of other immunoglobulin classes. Injection of excessive or subimmunogenic doses of antigen, or injection of antigen in a nonimmunogenic form will specifically depress antibody body syntheis to that antigen. Depending upon the antigen dose and other factors discussed above such tolerance can be selectively induced in either the B- or the T-lymphocyte population. Finally, antibody is highly heterogeneous with respect to its affinity for the antigenic determinant. As a consequence of the selective pressure of decreasing antigen concentration there is generally a progressive shift towards the production of high affinity antibodies. Various experimental maneuvers can selectively depress specific subpopulations of antibody forming cells. B-cell tolerance preferentially occurs in high affinity antibody forming cells with a decrease in the average affinity of the residual antibody formed. Passively injected antibody specifically depresses antibody synthesis to concomitantly injected antigen. This antibody mediated immune suppression selectively depresses low affinity antibody synthesis. Thus, a variety of experimental procedures have been discussed which will modify the immune response in highly selected ways.It is clearly important in describing the immune response to specify not merely the amount of antibody formed, but also its class and subclass. In addition, to fully describe the immune response it is necessary to specify the affinity and heterogeneity of the antibody. As discussed above the factors controlling the affinity of serum antibody and the mechanism of antibody mediated immune suppression are reasonably well understood. Much data are available regarding factors determining tolerance induction, however, the detailed cellular mechanisms involved remain obscure. With regard to the mechanisms determining which immunoglobulin classes are formed, and in what proportion, relatively little information is available.  相似文献   

3.
4.
Binding of antigen to B-cell antigen receptor (BCR) leads to antigen internalization and presentation to T cells, a critical process in the initiation of the humoral immune response. However, antigen internalization has been demonstrated for soluble antigen, in vivo antigen is often encountered in insoluble form or tethered to a cell surface. Here, we show that not only can B cells internalize and present large particulate antigen (requiring a signalling-competent BCR to drive antigen uptake), but they can also extract antigen that is tethered tightly to a non-internalizable surface. The form in which the antigen is displayed affects the B cell's ability to discriminate antigen-BCR affinity. Thus, arraying an antigen on a particle or surface allows efficient presentation of low affinity antigens. However, the presentation efficiency of antigen arrayed on an internalizable particle plateaus at low affinity values. In contrast, extraction and presentation of antigen from a non-internalizable surface depends on antigen-BCR affinity over a wide affinity range. The results have implications for understanding both the initiation and affinity maturation of the immune response.  相似文献   

5.
During the several-week course of an immune response, B cells undergo a process of clonal expansion, somatic hypermutation of the immunoglobulin (Ig) genes and affinity-dependent selection. Over a lifetime, each B cell may participate in multiple rounds of affinity maturation as part of different immune responses. These two time-scales for selection are apparent in the structure of B-cell lineage trees, which often contain a ‘trunk’ consisting of mutations that are shared across all members of a clone, and several branches that form a ‘canopy’ consisting of mutations that are shared by a subset of clone members. The influence of affinity maturation on the B-cell population can be inferred by analysing the pattern of somatic mutations in the Ig. While global analysis of mutation patterns has shown evidence of strong selection pressures shaping the B-cell population, the effect of different time-scales of selection and diversification has not yet been studied. Analysis of B cells from blood samples of three healthy individuals identifies a range of clone sizes with lineage trees that can contain long trunks and canopies indicating the significant diversity introduced by the affinity maturation process. We here show that observed mutation patterns in the framework regions (FWRs) are determined by an almost purely purifying selection on both short and long time-scales. By contrast, complementarity determining regions (CDRs) are affected by a combination of purifying and antigen-driven positive selection on the short term, which leads to a net positive selection in the long term. In both the FWRs and CDRs, long-term selection is strongly dependent on the heavy chain variable gene family.  相似文献   

6.
We show that iterative antigen-mediated selection of B-cell lines that constitutively hypermutate their immunoglobulin V genes during culture can be exploited to generate antibodies in vitro. From Ramos, a hypermutating human B-cell line expressing IgM of unknown specificity, we derived descendants that exhibit stepwise improved binding to streptavidin. Binding is initially conferred by mutations in complementarity-determining regions (CDRs), but maturation is due to strategic framework mutations. A more powerful system is provided by a hypermutating chicken B-lymphoma line, owing to its rapid proliferation, high rate of mutation accumulation, and genetic tractability. Starting from a single cell, we selected parallel lineages of derivatives, making mutated antibodies of increasing affinity to independent test antigens. Selection is initiated at an exceedingly low affinity threshold, but antibodies can be delivered with nanomolar affinities. The strategy could prove useful for in vitro generation of antigen-specific monoclonal antibodies and may be extendable to the maturation of other protein-ligand interactions.  相似文献   

7.
Novel proteins have been elaborated over evolutionary time by an iterative alternation of mutation and selection. In a similar way, the humoral immune system also uses an iterative alternation of mutation and selection to generate novel antibodies that display a high affinity for their cognate antigen -- but this is achieved in a matter of a days. Gene rearrangement is used to produce a primary repertoire of antibodies and, on entering the body, antigen triggers the clonal expansion of those B lymphocytes that express a cognate antibody, albeit one of low affinity. Rapid and specific affinity maturation is then achieved by subjecting the immunoglobulin genes in the rapidly expanding B cells to a period of intense mutation. The intensity of this mutational assault is tolerated because it is targeted specifically to the immunoglobulin genes, causing relatively little damage to other loci. Antigen-mediated selection then allows the preferential expansion of those mutants expressing antibodies displaying improved binding characteristics. Here, studies are described that have been performed to glean insight into the mechanisms of the hypermutation and selection processes. Experiments are also described in which an attempt has been made to recapitulate aspects of physiological antibody generation in vitro, allowing the development of novel approaches to the generation of proteins with high-affinity binding sites.  相似文献   

8.
Affinity maturation is a process that leads to the emergence of more efficient antibodies following initial antigen encounter and represents a key strategy of the adaptive immunity of vertebrate organisms. Earlier and detailed sequence studies of the antibody response to a model antigen, the hapten 2-phenyl-5-oxazolone (phOx), define three different classes of antibodies. Class I antibodies use the V(H)Ox1/V(kappa)Ox1 gene pair and dominate the early stages of the anti-phOx response, class II antibodies use the V(kappa)Ox1 gene but a different V(H) segment and are common in the intermediate stages, and class III antibodies use the TEPC15/V(kappa)45.1 genes and play the greatest role in the late stages. Only the crystal structure of one anti-phOx antibody, the class II NQ10/12.5 Fab fragment, has been described. Here we report the crystal structures of the scFv form of the low and high affinity anti-phOx class III antibodies NQ10/1.12 and NQ16/113.8 complexed with the hapten. The two antibodies differ by nine amino acid substitutions, all located in the V(H) domain. Analysis of the two structures shows that affinity maturation results from an increase in surface complementarity, as a consequence of a finely tuned and highly concerted process chaperoned by the somatic mutations, and implies a more efficient hapten-induced fit in the mature antibody. The data also demonstrate that class III antibodies respond in a completely different way to the architectural problem of binding phOx compared to the class II antibody NQ10/12.5.  相似文献   

9.
Combinatorial libraries of rearranged hypervariable V(H) and V(L) sequences from nonimmunized human donors contain antigen specificities, including anti-self reactivities, created by random pairing of V(H)s and V(L)s. Somatic hypermutation of immunoglobulin genes, however, is critical in the generation of high-affinity antibodies in vivo and occurs only after immunization. Thus, in combinatorial phage display libraries from nonimmunized donors, high-affinity antibodies are rarely found. Lengthy in vitro affinity maturation is often needed to improve antibodies from such libraries. We report the construction of human Fab libraries having a unique combination of immunoglobulin sequences captured from human donors and synthetic diversity in key antigen contact sites in heavy-chain complementarity-determining regions 1 and 2. The success of this strategy is demonstrated by identifying many monovalent Fabs against multiple therapeutic targets that show higher affinities than approved therapeutic antibodies. This very often circumvents the need for affinity maturation, accelerating discovery of antibody drug candidates.  相似文献   

10.
Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.  相似文献   

11.
We describe a process, based on display of antibodies on the surface of filamentous bacteriophage, for selecting antibodies either by their affinity for antigen or by their kinetics of dissociation (off-rate) from antigen. For affinity selection, phage are mixed with small amounts of soluble biotinylated antigen (less than 1 microgram) such that the antigen is in excess over phage but with the concentration of antigen lower than the dissociation constant (Kd) of the antibody. Those phage bound to antigen are then selected using streptavidin-coated paramagnetic beads. The process can distinguish between antibodies with closely related affinities. For off-rate selection, antibodies are preloaded with biotinylated antigen and diluted into excess unlabelled antigen for variable times prior to capture on streptavidin-coated paramagnetic beads. To mimic the affinity maturation process of the immune system, we introduced random mutations into the antibody genes in vitro using an error-prone polymerase, and used affinity selection to isolate mutants with improved affinity. Starting with a small library (40,000 clones) of mutants (average 1.7 base changes per VH gene) of the mouse antibody B1.8, and using several rounds of affinity selection, we isolated a mutant with a fourfold improved affinity to the hapten 4-hydroxy-5-iodo-3-nitrophenacetyl-(NIP)-caproic acid (mutant Kd = 9.4(+/- 0.3) nM compared with B1.8 Kd = 41.9(+/- 1.6) nm). The relative increase in affinity of the mutant is comparable to the increase seen in the anti-4-hydroxy-3-nitrophenylacetyl/NIP-caproic acid murine secondary immune response.  相似文献   

12.
The process whereby the immune system generates antibodies of higher affinities during a response to antigen (affinity maturation) is a prototypical example of molecular evolution. Earlier studies have been confined to antibodies specific for small molecules (haptens) rather than for proteins. We compare the structures of four antibodies bound to the same site on hen egg white lysozyme (HEL) at different stages of affinity maturation. These X-ray snapshots reveal that binding is enhanced, not through the formation of additional hydrogen bonds or van der Waals contacts or by an increase in total buried surface, but by burial of increasing amounts of apolar surface at the expense of polar surface, accompanied by improved shape complementarity. The increase in hydrophobic interactions results from highly correlated rearrangements in antibody residues at the interface periphery, adjacent to the central energetic hot spot. This first visualization of the maturation of antibodies to protein provides insights into the evolution of high affinity in other protein-protein interfaces.  相似文献   

13.
《MABS-AUSTIN》2013,5(1):204-218
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.

In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab.  相似文献   

14.
We examined the positive and negative effects of somatic mutation on antibody function using saturation mutagenesis in vitro to mimic the potential of the in vivo process to diversify antibodies. Identical mutations were introduced into the second complementarity determining region of two anti-phosphocholine antibodies, T15 and D16, which share the same germline VH gene sequence. T15 predominates in primary responses and does not undergo affinity maturation. D16 is representative of antibodies that co-dominate in memory responses and do undergo affinity maturation. We previously reported that > 50% of T15 mutants had decreased antigen binding capacity. To test if this high frequency of binding loss was unique to T15 or a consequence of random point mutations applicable to other combining sites, we analyzed the same mutations in D16. We show that D16 suffers a similar loss of function, indicating an equally high potential for B-cell wastage. However, only D16 displayed the capacity for somatic mutation to improve antigen binding, which should enhance its persistence in memory responses. Mutation of residues contacting the haptenic group, as determined by molecular modeling, did not improve binding. Instead, productive mutations occurred in residues that either contacted carrier protein or were distant from the antigen binding site, possibly increasing binding site flexibility through long-range effects. Targeting such residues for mutation should aid in the rational design of improved antibodies.  相似文献   

15.
A central paradigm in immunology states that successful generation of high affinity antibodies necessitates an immense primary repertoire of antigen-combining sites. Much of the diversity of this repertoire is provided by varying one antigen binding loop, created by inserting randomly a D (diversity) gene out of a small pool between the V and J genes. It is therefore assumed that any particular D-encoded region surrounded by different V and J regions adopts a different conformation. We have solved the structure of two lysozyme-specific variable domains of heavy-chain antibodies isolated from two strictly unrelated dromedaries. These antibodies recombined identical D gene sequences to different V and J precursors with significant variance in their V(D)J junctions. Despite these large differences, the D-encoded loop segments adopt remarkably identical architectures, thus directing the antibodies toward identical epitopes. Furthermore, a striking convergent maturation process occurred in the V region, adapting both binders for their sub-nanomolar affinity association with lysozyme. Hence, on a structural level, humoral immunity may rely more on well developed maturation and selection systems than on the acquisition of large primary repertoires.  相似文献   

16.
The expression of individual clonal products during long-term in vivo culture was investigated using a rabbit model system of bone marrow transplantation. RLA (MHC) matched rabbits were deliberately mismatched for kappa light chain immunoglobulin allotype to facilitate identification of antibodies as being of donor or recipient origin. Recipients of cells from antigen-primed donors responded to antigen stimulation with antibody of donor origin, showing that cells were effectively triggered for antibody production in the recipient. Isoelectric focusing followed by affinity immunoblotting of the expressed antibodies showed that the responding B-cell clonotype repertoire remained virtually unchanged throughout the extensive cell transfer protocol used. These results suggest that B-memory-cell stimulation, rather than stem cell differentiation, was responsible for the observed response patterns. There was no detectable increase in the heterogeneity of the donor-derived antibody response with time and no new clonotypes appeared which were not present in the cell donor. Unlike previous studies, early stimulation with antigen was not required for successful engraftment and memory cell establishment. However, our data suggest that the timing of antigenic challenge may determine which of the donor-derived clones will dominate a response after antigen challenge of the recipient.  相似文献   

17.
During the immune response, the generation of memory B lymphocytes in germinal centers involves affinity maturation of the cells’ antigen receptors, based on somatic hypermutation of receptor genes and antigen-driven selection of the resulting mutants. Affinity maturation is vital for immune protection, and is the basis of humoral immune learning and memory. Lineage trees of somatically hypermutated immunoglobulin genes often serve to qualitatively illustrate claims concerning the dynamics of affinity maturation in germinal centers. Here, we derive the quantitative relationships between parameters characterizing affinity maturation dynamics (proliferation, differentiation and mutation rates, initial affinity of the Ig to the antigen, and selection thresholds) and the mathematical properties of lineage trees, using a computer simulation which combines mathematical models for all mature B cell populations, stochastic models of hypermutation and selection, lineage tree generation and measurement of graphical tree characteristics. We identified seven key lineage tree properties, and found correlations of these with initial clone affinity and with the selection threshold. These two parameters were found to be the main factors affecting lineage tree shapes in both primary and secondary response trees. The results also confirm that recycling from centrocytes back to centroblasts is highly likely.  相似文献   

18.
The close association of follicular dendritic cells (FDCs) and germinal-centre B cells has fostered the idea that B-cell recognition of retained antigen that is presented on the surface of FDCs is important for affinity maturation and memory B-cell development. We argue that the retention of immune complexes is not required for germinal-centre development, affinity maturation and memory B-cell maintenance. Instead, it is probable that FDCs support B-cell proliferation and differentiation in a non-specific manner. Other potential roles of immune complexes retained by FDCs are discussed.  相似文献   

19.
Somatic mutation has been implicated as a significant and possibly primary factor in the maturation of antibody affinity in the humoral immune response. B cells stimulated by antigen experience a hyper-mutation in the gene segments that code for the antigen-binding site of the antibody, creating antibody specificities that did not exist at the time of immunization. Although most of the mutations are likely to be disadvantageous, new specificities with a higher affinity for the antigen are sometimes created. These higher-affinity cells are preferentially selected for proliferation and eventual antibody secretion, resulting in a progressively higher average affinity over time. In this paper we present the results of an investigation of somatic mutation through the use of a computer model. At the basis of the model is a large repertoire of discrete antibodies and antigens, having three-dimensional structures, that exhibit properties similar to those of the real populations. The key factor is that the binding strength between any antibody/antigen pair can be calculated as a function of the complementarity of the (a) size, (b) shape and (c) functional groups that comprise the two structures. The created repertoires are imbedded in a dynamical system model of the immune response to directly evaluate the affect of somatic mutation on affinity maturation. We also present an expanded hypothesis of clonal selection and development to explain how the mutational restrictions imposed by the genetic code and the structure of the antibody repertoire, along with antigen concentration, affinity, and probabilistic factors may interact and contribute to the expansion of specific clones as the response develops over time.  相似文献   

20.
In the chicken immune system, gene conversion, a type of homologous recombination, primarily contributes to diversification of the immunoglobulin gene. Here, we report on the rapid generation of specific monoclonal antibodies using the chicken DT40 B-cell line undergoing gene conversion. We discovered that the gene conversion frequency at the immunoglobulin locus is increased by treating DT40 cells with a histone deacetylase inhibitor, trichostatin A (TSA), thereby generating diversity at the immunoglobulin locus in the majority of treated cells. This indicates that TSA treatment accelerates the autonomous diversification of surface IgMs on DT40 cells. We took advantage of this effect to select DT40 cells producing specific antibodies with antigen-conjugated magnetic beads. This autonomously diversifying library (ADLib) selection system enables the quick establishment (approximately 1 week from a diversifying library) of various clones producing monoclonal IgMs with enough specificity and affinity for immunological assays, and is applicable to various biotechnologies including rational protein design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号