首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anaerobic growth and fermentation of a marine isolate of Paecilomyces lilacinus is described. The fungus was isolated from mullet gut and grew optimally at 30°C and at a salinity of ≥10%. The best growth was obtained with glucose or laminarin as substrate, and the growth yield was 5.0 g (dry weight of fungus) per mol of hexose fermented. Moles of products as a percentage of moles of hexose fermented were acetate, 29.0%; ethanol, 156.6%; CO2, 108.0%; and lactate, 4.3%. Together these products accounted for >80% of hexose carbon. Hydrogen and formate were not detectable as fermentation end products (<0.5%). Other substrates utilized for growth, although less effectively than laminarin or glucose, included the monosaccharides galactose, fructose, arabinose, and xylose and the disaccharides maltose and cellobiose. No growth of the fungus occurred on cellulose, and of a variety of other polysaccharides tested only xylan supported growth.  相似文献   

2.
Inhibitory effects of H2 on growth of Clostridium cellobioparum.   总被引:15,自引:10,他引:5       下载免费PDF全文
Hydrogen inhibits the growth of hydrogen-producing Clostridium cellobioparum, but not of Escherichia coli or Bacteroides ruminicola. The inhibition is reversible. When hydrogen was removed either by palladium black or by gassing out the tube, glucose utilization increased as did optical density and hydrogen production of C. cellobioparum. Removal of the H2 by methanogenic bacteria favors the growth of C. cellobioparum. Grown with Methanobacterium ruminantium in various concentrations of glucose, the Clostridium reaches a higher optical density and produces more H2 and a higher viable cell count. The cell yield is also higher than in pure culture. In mixed culture, C. cellobioparum produces more acetic acid and less lactic acid, ethanol, and butyric acid than in pure culture. The significance of this metabolic shift and hydrogen utilization in methanogenesis is discussed.  相似文献   

3.
Substrate and energy costs of the production of exocellular enzymes from glucose and citrate by B. Iicheniformis S1684 as well as molar growth yields corrected for these costs of product formation were calculated using data from chemostat experiments. The calculations showed that 1.46-1.73 mol glucose and 2.31-2.77 mol citrate are needed for formation and excretion of 1 mol protein. Consequently, the values of the maximal product yield from substrate (Y(psm') g/mol) are 80 < Y(psm) < 95 when product is formed from glucose and 50 < Y(psm) < 60 when product is formed from citrate. The higher substrate costs for product formation from citrate are due to a higher level of CO(2) production during protein formation and a higher substrate requirement for the energy supply of product formation and excretion than when product is formed from glucose. The theoretical ATP requirement for protein synthesis could be determined reasonably well, but the energy costs of protein excretion could not be determined exactly. The energy costs of protein formation are higher than those of biomass formation or protein excretion. Molar growth yields corrected for the substrate costs of product formation were high, indicating a high efficiency of growth.Growth and production parameters were determined as well from experimental data of recycling fermentor experiments using a parameter optimization procedure based on a mathematical model describing biomass growth as a linear function of the substrate consumption rate and the rate of product formation as a linear function of biomass growth rate. The fitting procedure yielded two growth and production domains during glucose limitation. In the first domain the values for the maximal growth yield and maintenance coefficient were in agreement with those found in chemostat experiments at corresponding values of Y(spm). Domain 2 could be described best with linear growth and product formation. In domain 2 the rate of product formation decreased and more substrate became available for biomass formation. As a consequence the specific growth rate increased in the shift from domain 1 to 2. Domain 2 behavior most probably is caused by the rel-status of B. Iicheniformis S1684.  相似文献   

4.
Summary Rhizopus arrhizus biomass attached itself to fermentor walls, baffles and impellers when grown in casein/ glucose media. In shake flasks, dispersed filamentous growth was produced in media containing certain concentrations of glucose and soya flour. Other media tested produced pelleted or clumpy growth. Medium initial pH did not affect morphology type. Dispersed growth could not be obtained by addition of detergents, oils and polymers to a clear glucose/soya peptone medium. Addition of maize solids to this medium resulted in dispersed growth which occurred even in the presence of calcium, which in most media caused pellet formation. Mycelia appeared to bind to the maize particles and use these as growth centres thereby preventing pellet or clump formation. Mycelial pellets appeared to originate either from a single spore or by interaction of branched hyphae from different spores. Medium composition and macro-morphology type correlate with differences in hyphal structures.  相似文献   

5.
R. B. Walsh  D. Clifton  J. Horak    D. G. Fraenkel 《Genetics》1991,128(3):521-527
A congenic series of Saccharomyces cerevisiae strains has been constructed which carry, in all combinations, null mutations in the three genes for glucose phosphorylation: HXK1, HXK2 and GLK1, coding hexokinase 1 (also called PI or A), hexokinase 2 (PII or B), and glucokinase, respectively: i.e., eight strains, all of which grow on glucose except for the triple mutant. All or several of the strains were characterized in their steady state batch growth with 0.2% or 2% glucose, in aerobic as well as respiration-inhibited conditions, with respect to growth rate, yield, and ethanol formation. Glucose flux values were generally similar for different strains and conditions, provided they contained either hexokinase 1 or hexokinase 2. And their aerobic growth, as known for wild type, was largely fermentative with ca. 1.5 mol ethanol made per mol glucose used. The strain lacking both hexokinases and containing glucokinase was an exception in having reduced flux, a result fitting with its maximal rate of glucose phosphorylation in vitro. Aerobic growth of even the latter strain was largely fermentative (ca. 1 mol ethanol per mol glucose). Invertase expression was determined for a variety of media. All strains with HXK2 showed repression in growth on glucose and the others did not. Derepression in the wild-type strain occurred at ca. 1 mM glucose. The metabolic data do not support- or disprove-a model with HXK2 having only a secondary role in catabolite repression related to more rapid metabolism.  相似文献   

6.
The capacity to inhibit P815 mastocytoma growth was induced in macrophages elicited by trehalose dimycolate by a short in vitro treatment with 10 ng/ml LPS. Activation by LPS was associated with a 3 fold increase in the rate of glucose consumption by macrophages. Incubation of activated macrophages with the glucocorticoid dexamethasone (greater than or equal to 10(-8) M) for several hours (greater than or equal to 5 h) resulted in an inhibition of antitumoral activity and a decrease of glucose consumption. Hydrogen peroxide production is a property expressed by trehalose dimycolate-elicited macrophages independently of the presence of LPS. The capacity to release hydrogen peroxide upon triggering was not affected by a pretreatment of macrophages by dexamethasone. The antiglucocorticoid compound RU 38486, known to bind with a high affinity to glucocorticoid receptors without agonist effect, prevented the inhibitory actions of dexamethasone, indicating that these are receptor-mediated.  相似文献   

7.
During growth on glucose, Botrytis cinerea produced extracellular beta-(1,3)(1,6)-d-glucan (cinerean), which formed an adhering capsule and slime. After glucose was exhausted from the medium, cinereanase activity increased from <0.4 to 30 U/liter, effecting a striking loss in the viscosity of the culture. Cinerean was cleaved into glucose and gentiobiose. Gentiobiose was then hydrolyzed to glucose. While cinereanase activity was strongest in the culture supernatant, gentiobiase activity was located mainly in the cell wall fraction. The addition of extra glucose or cycloheximide prevented the cinerean degradation caused by an effect on cinereanase formation. Cinerean degradation was accompanied by microconidiation and sclerotium formation. B. cinerea was found to grow on cinerean with the latter as its single carbon and energy source. In this case, cinerean degradation occurred during hyphal growth, and no microconidiation or sclerotium formation was observed. Growth experiments with various carbon sources indicated that cinerean had a positive effect on the formation of cinerean-degrading enzymes.  相似文献   

8.
An astaxanthin-producing yeast Xanthophyllomyces dendrorhous ENM5 was cultivated in a liquid medium containing 50 g/L glucose as the major carbon source in stirred fermentors (1.5-L working volume) in fully aerobic conditions. Ethanol was produced during the exponential growth phase as a result of overflow metabolism or fermentative catabolism of glucose by yeast cells. After accumulating to a peak of 3.5 g/L, the ethanol was consumed by yeast cells as a carbon source when glucose in the culture was nearly exhausted. High initial glucose concentrations and ethanol accumulation in the culture had inhibitory effects on cell growth. Astaxanthin production was partially associated with cell growth. Based on these culture characteristics, we constructed a modified Monod kinetic model incorporating substrate (glucose) and product (ethanol) inhibition to describe the relationship of cell growth rate with glucose and ethanol concentrations. This kinetic model, coupled with the Luedeking-Piret equation for the astaxanthin production, gave satisfactory prediction of the biomass production, glucose consumption, ethanol formation and consumption, and astaxanthin production in batch cultures over 25-75 g/L glucose concentration ranges. The model was also applied to fed-batch cultures to predict the optimum feeding scheme (feeding glucose and corn steep liquor) for astaxanthin production, leading to a high volumetric yield (28.6 mg/L) and a high productivity (5.36 mg/L/day).  相似文献   

9.
Saccharomyces cerevisiae IFO 0203, a polyploid yeast used in ethanol production in Japan, grows as ovoid cells in unstirred batch culture and on fully nutritive agar plates (2% w/v glucose; 0.67% w/v Difco yeast nitrogen base).
Extensively branched pseudohyphae formed on 0.01% w/v ammonium sulphate plates within a few days. In continuous culture with high oxygen supply and limiting glucose, cells were elongated but growth was vigorous and the daughter cells separated well after budding.
Limitation of growth by either nitrogen source or oxygen during continuous culture resulted in formation of truncated, occasionally branched, pseudohyphae up to five cells in length.  相似文献   

10.
The insect stage of Trypanosoma brucei adapted the activities of 16 metabolic enzymes to growth rate and carbon source. Cells were grown in chemostats with glucose, rate limiting or in excess, or high concentrations of proline as carbon and energy sources. At each steady state, samples were collected for measurements of substrate and end product concentrations, cellular parameters, and enzyme activities. Correlation coefficients were calculated for all parameters and used to analyze the data set. Rates of substrate consumption and end product formation increased with increasing growth rate. Acetate and succinate were the major nonvolatile end products, but measurable quantities of alanine were also produced. More acetate than succinate was formed during growth on glucose, but growth on proline yielded an equimolar ratio. Growth rate barely affected the relative amounts of end products formed. The end products accounted for the glucose consumed during glucose-limited growth and growth at high rates on excess glucose. A discrepancy, indicating production of CO2, occurred during slow growth on excess glucose and, even more pronounced, in cells growing on proline. The activities of the metabolic enzymes varied by factors of 2 to 40. There was no single enzyme that correlated with consumption of substrate and/or end product formation in all cases. A group of enzymes whose activities rigorously covaried could also not be identified. These findings indicate that T. brucei adapted the activities of each of the metabolic enzymes studied separately. The results of this complex manner of adaptation were more or less constant ratios of the end products and a very efficient energy metabolism.  相似文献   

11.
Dietary carbohydrate, the principal energy source for insects, also determines the level of the blood sugar trehalose. This disaccharide, a byproduct of glycolysis, occurs at highly variable concentrations that play a key role in regulating feeding behavior and growth. Little is known of how developing insects partition the metabolism of dietary carbohydrate to meet the needs for blood trehalose, ribose sugars and NADPH, as well as energy production. This study examined the effects of varying dietary sucrose levels between 3.4 and 34 g/l in an artificial diet on growth rate, depot fat content and blood sugar formation from (13)C-enriched glucose in Manduca sexta. (2-(13)C)Glucose or (1,2-(13)C(2))glucose were administered to larvae by injection and after 6 h blood was analyzed by nuclear magnetic resonance spectroscopy. [2-(13)C]Trehalose was the principal product of [2-(13)C]glucose, but trehalose was also (13)C-enriched at C1 and C3, demonstrating activity of the pentose phosphate pathway. The trehalose C1/C2 (13)C-enrichment ratio, a measure of the substrate cycled through the pentose pathway, significantly increased with increasing dietary sugar, and reached a mean of 0.22 at the highest level. Blood trehalose concentration increased from approximately 38 mM at the lowest dietary carbohydrate level to 75 mM at the highest. Moreover, blood trehalose, growth rate and depot fat all increased in precisely the same way in relation to the level of pentose cycling. Based on the multiplet (13)C-NMR signal structure of trehalose synthesized from [1,2-(13)C(2)]glucose by insects maintained on a high carbohydrate diet, it was established that the formation of trehalose from glucose phosphate derived directly from the administered substrate, with no involvement of the pentose pathway, was greater than that from glucose phosphate metabolized through the pentose pathway prior to trehalose synthesis. On the other hand, glucose phosphate first metabolized through the pentose pathway contributed more to pyruvate formation than did glucose phosphate formed from the labeled substrate metabolized directly to pyruvate via glycolysis; this finding based on the multiplet (13)C-NMR signal structure in alanine derived from pyruvate. The results suggest that as dietary carbohydrate increases blood sugar synthesis from glucose phosphate derived directly from dietary sugar is facilitated by the pentose pathway which provides an increasing amount of substrate to pyruvate formation.  相似文献   

12.
Ozone caused leakage of trapped glucose from liposomes made from egg yolk phosphatidylcholine. A comparison between the lytic activity of ozone and ozone treated liposomes on human red cells showed the liposomes to be by far the most active. Hydrogen peroxide was not responsible for the observed effect. Amount of malonaldehyde formed during ozonization of phosphatidylcholine was a much poorer index of reaction than amount of hydrogen peroxide formed, the latter probably close to reacted double bonds. Results obtained indicated that attack of ozone produced molecules in which the unsaturated fatty acid in position 2 was shortened at the double bond with the formation of aldehyde or acid as the terminal group. In order to explain some of the analytical data further ozonization of primary products is postulated.  相似文献   

13.
The role of cyclic adenosine monophosphate (cAMP) during growth and development of Aspergillus nidulans was investigated. In normal cultures the highest amount of cAMP, expressed on a dry weight basis, was found after 24 h of growth when still more than 5% glucose was present in the medium. After depletion of the medium even a slight fall in cAMP was noted. Glucose concentrations ranging from 0.5–12% resulted in a slight decrease in the amount of cAMP as measured after 24 h of growth.Cultures with manganese deficiency resulted in a low cAMP level after 24 h of growth. However, the exhaustion of glucose in the absence of manganese was connected with a sharp increase in cAMP. This indicates that manganese shortage was not a direct cause of the low cAMP level after 24 h. The amount of cAMP rose with increasing concentration of manganese in the medium until a maximum at 0.25 M. It is tempting to speculate that this rise in cAMP in the manganese deficient culture is explained by the absence of glucose, that in the control culture is derived from the breakdown of the reserve material -1,3-glucan.Addition of manganese after glucose exhaustion to a manganese deficient culture induced cleistothecium formation. However, they contained only a few ascospores indicating the importance of -1,3 glucan as a carbon and energy source for ascospore formation. The regulation of the level of cAMP by the transport of glucose into the cell or its intracellular concentration is discussed.  相似文献   

14.
Summary Glucose and acetate enhanced cell growth and phycocyanin production of S. platensis. The highest specific growth rate, cell concentration and phycocyanin production were respectively 0.62 d-1, 2.66 g/l and 322 mg/l on glucose and 0.52 d-1, 1.81 g/l and 246 mg/l on acetate. The specific growth rate of the alga on 2.5 g glucose/l was markedly increased with increasing light intensity up to 2 klux. Further increasing light intensity to 4 klux only resulted in a very slight increase in specific growth rate. At a light intensity above 4 klux, photoinhibition occurred. Light favoured phycocyanin formation. The highest phycocyanin content was obtained at a light intensity of 4 klux. When the light intensity decreased to 2 klux or less, the optimal glucose concentration for biomass production shifted from 2.5 g/l to 5.0 g/l.  相似文献   

15.
The metabolism of strain H10, a cellulolytic mesophilic Clostridium sp., was studied on glucose and cellobiose as energy and carbon sources. The main products of fermentation of both sugars were acetate, lactate, and ethanol. At low sugar levels, molar growth yields were better for cellobiose than for glucose. In both cases, an inhibition of growth was observed between 1 and 2 g/liter and a total inhibition after the latter concentration. Inhibition was not the result of low pH due to acid formation; growth under static pH conditions was limited in the same way. On the other hand, acetate and lactate had no inhibitory effect when added at concentrations equal to the final titers. Concomitant with the inhibition of growth was a change in metabolic pathways for sugar concentrations between 1 and 2 g/liter, i.e., the production of lactate was higher. After complete inhibition of growth, an accumulation of carbohydrates which were neither glucose nor cellobiose was observed.  相似文献   

16.
Haloarcula marismortui formed acetate during aerobic growth on glucose and utilized acetate as growth substrate. On glucose/acetate mixtures diauxic growth was observed with glucose as the preferred substrate. Regulation of enzyme activities, related to glucose and acetate metabolism was analyzed. It was found that both glucose dehydrogenase (GDH) and ADP-forming acetyl-CoA synthetase (ACD) were upregulated during periods of glucose consumption and acetate formation, whereas both AMP-forming acetyl-CoA synthetase (ACS) and malate synthase (MS) were downregulated. Conversely, upregulation of ACS and MS and downregulation of ACD and GDH were observed during periods of acetate consumption. MS was also upregulated during growth on peptides in the absence of acetate. From the data we conclude that a glucose-inducible ACD catalyzes acetate formation whereas acetate activation is catalyzed by an acetate-inducible ACS; both ACS and MS are apparently induced by acetate and repressed by glucose.  相似文献   

17.
Cells of Streptococcus diacetilactis DRCI grown at 32 C in media containing glucose as the energy source were osmotically fragile and began to lyse immediately after growth was stopped (by the action of chloramphenicol or the exhaustion of glucose), unless they were then stabilized by hypertonic medium or spermine or by storage at low pH or low temperature, or both. In media containing excess glucose, with growth limited by exhaustion of some nutrient other than the energy source, the appearance of lysis was masked by the occurrence of a balance between lysis and synthesis. The osmotic fragility apparently resulted from inability of the organism to use glucose as an adequate precursor of galactosamine, and conditions of temperature and pH that promoted rapid growth on glucose were particularly conducive to the formation of cells that lysed readily. Growing the organism in media containing galactose, lactose, maltose, or glucose (at 17 C) as energy source resulted in the formation of cells that were resistant to lysis and richer in galactosamine than unstable cells formed on glucose at 32 C. The results indicate that the organism phosphorolyzes maltose to glucose plus beta-glucose-1-phosphate, and suggest that it can use the beta-glucose-1-phosphate in place of alpha-glucose-1-phosphate in the formation of cell materials.  相似文献   

18.
Abstract Hydrogenase activity was characterized in cell extracts of Propionispira arboris that consumed or produced H2, coupled to methyl viologen reduction, and displayed highest levels (2.6 μmol/min/mg protein) in extracts prepared from fumarate-grown cells. Reversible hydrogenase activity in cell extracts correlated with the production of low levels of hydrogen during the growth phase and its subsequent consumption during the stationary phase of cells grown on glucose or lactate as the carbon and energy source. The addition of exogenous hydrogen to glucose, lactate or fumarate-grown cells dramatically increased propionate production at the expense of acetate formation. This accounted for the formation of propionate as nearly the sole end product of glucose fermentation under two atmospheres of hydrogen. The physiological function of hydrogenase in regulation of carbon and electron flow, and the significance of the results in applied and environmental microbiology are discussed.  相似文献   

19.
SYNOPSIS. In chemically defined media at carbohydrate concentrations ≧ 0.5% (w/v) Tetrahymena pyriformis W multiplied more rapidly, developed larger cells, and achieved greater growth as measured by optical density when carbohydrate was provided as dextrin rather than glucose. In media containing 0.3 mg/ml of amino acid nitrogen, growth increased with glucose concentration from 0.1 to 1%, did not change significantly to 3%, and was sharply inhibited at higher glucose levels. With dextrin, maximum growth paralleled carbohydrate concentration from 0.1 to 3%. At higher N levels the inhibitory concentration of glucose was lowered, but growth in dextrin media was not affected except at N concentrations that were inhibitory independent of carbohydrate source. At 1% carbohydrate levels, total cell protein per ml of culture was 60% greater, protein per cell approximately 50% greater, and cells were 1.5 to 2 times larger in media with dextrin than with glucose. Comparable differences in protein synthesis were observed at 2% carbohydrate levels and efficiency of conversion of substrate-N to protein-N was greater in the medium with dextrin than glucose.
Growth as measured by optical density in media with 0.3 mg/ml of N and 1 or 2% (w/v) of dextrin was not significantly reduced by the simultaneous presence of 1 or 2% glucose. This observation appeared to negate osmotic pressure as an explanation of reduced growth in the presence of glucose. At higher osmolar concentrations osmotic pressure appeared to be a major determinant of overall growth but not of cell size.  相似文献   

20.
Hydrogen peroxide (H2O2) can diffuse far from the site of production to intracellular locations where biological effects may be greater. The diffusion range is extended by H2O2 carriers formed spontaneously by hydrogen bonding with monomeric and polymeric compounds, including amino and dicarboxylic acids, peptides, proteins, nucleic acid bases, and nucleosides. Hydrogen peroxide adducts (HPAs) are readily synthesized, e.g., crystalline histidine (His)-H2O2 adducts. An equilibrium exists between an adduct-forming compound and H2O2. The detection and relative stabilities of HPAs are measured by the degree of decomposition of H2O2 as influenced by test compounds in buffered solution competing with glucose or fructose for H2O2. The HPAs delay decomposition of H2O2 up to several hundredfold. The overall charge on an HPA, i.e., its ability to penetrate cell membranes, influences the cytotoxic and clastogenic effects of H2O2. Growth inhibition of Salmonella typhimurium LT2 by H2O2 is enhanced by neutral HPAs but decreased by anionic HPAs. Addition of catalase 1, 10, or 30 min after inoculation of S. typhimurium LT2 reduces or nearly eliminates partial growth inhibition by H2O2, but a neutral HPA, expecially his-H2O2, transported H2O2 into the cells within 1 min, and in about 10 min completely inhibited growth. The stability of HPAs decreases with increasing pH or increasing temperature, while added Fe(II) in the presence and absence of EDTA accelerates H2O2 and HPA decomposition. Calculations indicate H2O2 hydrogen bonds with nucleic acid-base pairs with no apparent bond strain and energy stabilization comparable to normal hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号