首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R M Katusz  B Bono  R F Colman 《Biochemistry》1992,31(37):8984-8990
Incubation of S-(4-bromo-2,3-dioxobutyl)glutathione (S-BDB-G), a reactive analogue of glutathione, with the 1-1 isoenzyme of rat liver glutathione S-transferase at pH 6.5 and 25 degrees C results in a time-dependent inactivation of the enzyme. k(obs) exhibits a nonlinear dependence on S-BDB-G from 50 to 1200 microM, with a kmax of 0.111 min-1 and KI = 185 microM. The addition of 5 mM S-hexylglutathione, a competitive inhibitor with respect to glutathione, gives almost complete protection against inactivation by S-BDB-G. About 1.2 mol of [3H]S-BDB-G/mol of enzyme subunit is incorporated when the enzyme is 85% inactivated, whereas 0.33 mol of reagent/mol of subunit is incorporated in the presence of S-hexylglutathione when the enzyme has lost only 17% of its original activity. Modified enzyme, prepared by incubating glutathione S-transferase with [3H]S-BDB-G in the absence or in the presence of S-hexylglutathione, was reduced with sodium borohydride, reacted with N-ethylmaleimide, and digested with alpha-chymotrypsin. Analysis of the chymotryptic digests, fractionated by reverse-phase high-performance liquid chromatography, revealed Cys111 as the amino acid whose reaction with S-BDB-G correlates with enzyme inactivation. It is concluded that Cys111 lies within or near the hydrophobic substrate binding site of glutathione S-transferase, isoenzyme 1-1.  相似文献   

2.
R M Katusz  R F Colman 《Biochemistry》1991,30(47):11230-11238
S-(4-Bromo-2,3-dioxobutyl)glutathione (S-BDB-G), a reactive analogue of glutathione, has been synthesized and characterized by UV spectroscopy and thin-layer chromatography, as well as by bromide and primary amine analysis. Incubation of S-BDB-G (200 microM) with the 4-4 isoenzyme of rat liver glutathione S-transferase at pH 6.5 and 25 degrees C results in a time-dependent inactivation of the enzyme. The kobs exhibits a nonlinear dependence on S-BDB-G concentration from 50 to 1000 microM, with a kmax of 0.078 min-1 and K1 = 66 microM. The addition of 5 mM S-hexylglutathione, a competitive inhibitor with respect to glutathione, completely protects against inactivation by S-BDB-G. About 1.3 mol of [3H]S-BDB-G/mol of enzyme subunit is incorporated concomitant with 100% inactivation, whereas only 0.48 mol of reagent/mol of subunit is incorporated in the presence of S-hexylglutathione when activity is fully retained. Modified enzyme, prepared by incubating glutathione S-transferase with [3H]S-BDB-G in the absence or in the presence of S-hexylglutathione, was reduced with NaBH4, carboxymethylated, and digested with trypsin. The tryptic digest was fractionated by reverse-phase high-performance liquid chromatography. Two radioactive peptides were identified: Lys82-His-Asn-Leu-X-Gly-Glu-Thr-Glu-Glu-Glu-Arg93, in which X is modified Cys86, and Leu109-Gln-Leu-Ala-Met-CmCys-Y-Ser-Pro-Asp-Phe-Glu-Arg121 , in which Y is modified Tyr115. Only the Lys82-Arg93 peptide was modified in the presence of S-hexylglutathione when the enzyme retained full activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The chemical nature of the inactivation of citrate synthase by S-(4-bromo-2,3-dioxobutyl)-CoA, an active site-directed irreversible inhibitor, has been investigated. Active site-directed inactivation leads to derivatization of either Lys22 by epsilon-amino Schiff base formation or Glu363 by apparent alkylation of the gamma-carboxyl group, respectively. Lys22 is labeled in the tight (catalytic) form of the enzyme while Glu363 is labeled in the open (product release) form. Glu363 and Lys22 are both located at or near the entrance to an active site in the crystal structure of citrate synthase (Remington, S., Wiegand, G., and Huber, R. (1982) J. Mol. Biol. 158, 111-152). Glu363 is in the sequence of the protomer forming the active site while Lys22 is in the sequence of the other polypeptide in the homodimer. Labeling in this region appears to inactivate the enzyme by preventing access of substrates to the active site. A distinct and separate labeling process involves derivatization of Asn192 in the tight (catalytic) form and Ser198 and/or Ser199 in the open (product release) form at a locus far removed from the active site. Labeling at the second site may simply identify chemically reactive residues, or it may identify the binding site for long chain acyl-CoA, which has been identified as a possible allosteric negative effector of citrate synthase (Caggiano, A. V., and Powell, G. L. (1979) J. Biol. Chem. 254, 2800-2806). This second labeling process apparently inactivates the enzyme by interfering with catalytically essential conformational changes.  相似文献   

4.
Pig heart NAD-dependent isocitrate dehydrogenase is allosterically activated by ADP which reduces the Km of isocitrate. The new ADP analogue 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate (BDB-TADP) reacts irreversibly with the enzyme at pH 6.1 and 25 degrees C, causing a rapid loss of the ability of ADP to increase the initial velocity of assays conducted at low isocitrate concentrations and a slower inactivation measured using saturating isocitrate concentrations. The rate constant for loss of ADP activation exhibits a nonlinear dependence on BDB-TADP concentration; in the presence of 0.2 mM MnSO4, KI for the reversible enzyme-reagent complex is 0.069 mM with kmax at saturating reagent concentrations equal to 0.031 min-1. For reaction at the site causing overall inactivation, KI for the initial reversible enzyme-reagent complex is estimated to be 0.018 mM with kmax = 0.0083 min-1 in the presence of 0.2 mM MnSO4. Total protection against both reactions is provided by 1 mM ADP plus 0.2 mM MnSO4 or by 0.1 mM ADP plus 0.2 mM MnSO4 plus 0.2 mM isocitrate, but not by NAD, ATP, or ADP plus EDTA. The BDB-TADP thus appears to modify two distinct metal-dependent ADP-binding sites. Incubation of isocitrate dehydrogenase with 0.14 mM BDB-[beta-32P]TADP at pH 6.1 in the presence of 0.2 mM MnSO4 results in incorporation of 0.81 mol of reagent/mol of average subunit when the ADP activation is completely lost and the enzyme is 68% inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 0.5 mol of BDB-TADP/mol of average enzyme subunit causes complete loss of ADP activation, while reaction with another 0.5 mol of BDB-TADP would lead to total inactivation. The enzyme is composed of three distinct subunits in the approximate ratio 2 alpha:1 beta:1 gamma. The distribution of BDB-[beta-32P]TADP incorporated into modified enzyme is 63:30:7% for alpha:beta:gamma throughout the course of the reaction. These results indicate the 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate functions as an affinity label of two types of potential metal-dependent ADP sites of NAD-dependent isocitrate dehydrogenase and that these allosteric sites are present on two (alpha and beta) of the enzyme's three types of subunits.  相似文献   

5.
Bovine liver glutamate dehydrogenase reacts covalently with 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-monophosphate (2-BDB-TAMP) with incorporation of 1 mol reagent/mol enzyme subunit and loss of one of the two ADP sites of native enzyme [S. P. Batra and R. F. Colman, J. Biol. Chem. 261, 15565-15571 (1986)]. Incorporation of reagent is prevented specifically by ADP. The modified enzyme has now been digested with trypsin. The nucleotidyl peptide has been purified by chromatography on phenylboronate-agarose, followed by reverse-phase HPLC. On the basis of amino acid composition following acid hydrolysis, and gas-phase sequencing, the modified tryptic peptide was established as Ala-Gln-His-Ser-Gln-His-Arg, corresponding to amino acids 80-86 of the known glutamate dehydrogenase primary structure. The evidence presented indicates that the target amino acid attacked by 2-BDB-TAMP is histidine-82 and that this residue is located within the high-affinity ADP-activating site of glutamate dehydrogenase. In the course of this work, it was found that the positions of Gln84 and His85 had been reported as reversed in the revised sequence of bovine liver glutamate dehydrogenase [J. H. Julliard and E. L. Smith, J. Biol. Chem. 254, 3427-3438 (1979)]. Three additional corrections are here reported in the amino acid sequence of the native enzyme on the basis of gas-phase sequencing of other peptides purified by HPLC: Asp168 (not Asn); His221-Gly222 (not Gly-His); and Glu355 (not Gln).  相似文献   

6.
The active site of glutathione S-transferase isoenzyme 4-4, purified from rat liver, was studied by chemical modification. Tetrachloro-1,4-benzoquinone, a compound previously shown to inactivate glutathione S-transferases very efficiently by covalent binding in or close to the active site, completely prevented the alkylation of the enzyme by iodoacetamide, indicating that the reaction had taken place with cysteine residues. Both from radioactive labeling and spectral quantification experiments, evidence was obtained for the covalent binding of three benzoquinone molecules per subunit, i.e. equivalent to the number of cysteine residues present. This threefold binding was achieved with a fourfold molar excess of the benzoquinone, illustrating the high reactivity of this compound. Comparison of the number of amino acid residues modified by tetrachloro-1,4-benzoquinone with the decrease of catalytic activity revealed an almost complete inhibition after modification of one cysteine residue. Chemical modification studies with diethylpyrocarbonate indicated that all four histidine residues of the subunit are ethoxyformylated in an at least partially sequential manner. Modification of the second histidine residue resulted in complete loss of catalytic activity. Preincubation of the transferase with the glutathione conjugate of tetrachloro-1,4-benzoquinone resulted in 78% protection against this modification. However, glutathione itself hardly protected against the reaction with diethylpyrocarbonate. The intrinsic fluorescence properties of the enzyme were affected by covalent binding of tetrachloro-1,4-benzoquinone. The concentration dependency of the fluorescence quenching is strongly correlated with the inactivation of the enzyme, indicating that covalent binding of the benzoquinone occurs in the vicinity of at least one tryptophan residue. Finally, the binding of bilirubin, as measured by means of circular dichroism, was inhibited by preincubation of the enzyme with tetrachloro-1,4-benzoquinone in a manner which strongly correlated with the loss of enzymatic activity, the protection against inactivation by diethylpyrocarbonate, and the fluorescence quenching. All processes showed a 70-80% decrease after incubation of the enzyme with an equimolar amount of the benzoquinone. Thus, evidence is presented for the presence of a cysteine, a histidine and a tryptophan residue in, or in the vicinity of, the active site of the glutathione S-transferase 4 subunit.  相似文献   

7.
The amino acids involved in substrate (cAMP) binding to human platelet cGMP-inhibited cAMP phosphodiesterase (PDE3A) are identified. Less is known about the inhibitor (cGMP) binding site. We have now synthesized a nonhydrolyzable reactive cGMP analog, Rp-guanosine-3′,5′-cyclic-S-(4-bromo-2, 3-dioxobutyl)monophosphorothioate (Rp-cGMPS-BDB). Rp-cGMPS-BDB irreversibly inactivates PDE3A (KI = 43.4 ± 7.2 μM and kcart = 0.007 ± 0.0006 min−1). The effectiveness of protectants in decreasing the rate of inactivation by Rp-cGMPS-BDB is: Rp-cGMPS (Kd = 72 μM) > Sp-cGMPS (124), Sp-cAMPS (182) > GMP (1517), Rp-cAMPS (3762), AMP (4370 μM). NAD+, neither a substrate nor an inhibitor of PDE3A, does not protect. Nonhydrolyzable cGMP analogs exhibit greater affinity than the cAMP analogs. These results indicate that Rp-cGMPS-BDB targets favorably the cGMP binding site consistent with a docking model of PDE3A-Rp-cGMPS-BDB active site. We conclude that Rp-cGMPS-BDB is an effective active site-directed affinity label for PDE3A with potential for other cGMP-dependent enzymes.  相似文献   

8.
Glutathione S-transferase P (GST-P) bound a series of endogenous fatty acids (C12-C18). To clarify the function and the binding site of the fatty acids, interaction between fatty acids and GST-P was investigated by using 12-(9-anthroyloxy) stearic acid conjugated with Woodward's reagent K. The fluorescence-conjugated fatty acid noncompetitively inhibited GST activity. After GST-P was covalently labeled with the fatty acid, the enzyme was digested with Lysyl Endopeptidase. From the peptide mapping, a single fluorescence-labeled peptide was obtained. By the sequence analysis, the peptide binding fatty acid was determined as the residues of 141-188 from the amino terminus.  相似文献   

9.
Lee P  Gorrell A  Fromm HJ  Colman RF 《Biochemistry》1999,38(18):5754-5763
Adenylosuccinate synthetase from Escherichia coli is inactivated in a biphasic reaction by 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-monophosphate (6-BDB-TAMP) at pH 7.0 and 25 degrees C. The initial fast-phase inactivation is not affected by the presence of active-site ligands and can be completely eliminated by blocking Cys291 of the enzyme with N-ethylmaleimide (NEM). Reaction of the NEM-treated enzyme with 6-BDB-[32P]TAMP results in 2 mol of reagent incorporated/mol of enzyme subunit. The inactivation kinetics of the slow-phase exhibit an apparent KI of 40.6 microM and kmax of 0.0228 min-1. Active-site ligands, either adenylosuccinate or IMP and GTP, completely prevent inactivation of the enzyme by 6-BDB-TAMP, whereas IMP or IMP and aspartate is much less effective in protection. 6-BDB-TAMP-inactivated enzyme has a 3-fold increase in Km for aspartate with no change in Km for IMP or GTP. Protease digestion of 6-BDB-[32P]TAMP inactivated enzyme reveals that both Arg131 and Arg303 are modified by the affinity-labeling reagent. The crystal structure [Poland, B. W., Fromm, H. J., and Honzatko, R. B. (1996) J. Mol. Biol. 264, 1013-1027] and site-directed mutagenesis [Kang, C., Sun, N., Poland, B. W., Gorrell, A., and Fromm, H. J. (1997) J. Biol. Chem. 272, 11881-11885] of E. coli adenylosuccinate synthetase show that Arg303 interacts with the carboxyl group of aspartate and the 2'-OH of the ribose of IMP and Arg131 is involved in stabilizing aspartate in the active site of the enzyme. We conclude that 6-BDB-TAMP functions as a reactive adenylosuccinate analogue in modifying both Arg131 and Arg303 in the active site of adenylosuccinate synthetase.  相似文献   

10.
S P Batra  R F Colman 《Biochemistry》1986,25(12):3508-3515
6-[(4-Bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate (6-BDB-TADP) has been shown to react at the reduced diphosphopyridine nucleotide (DPNH) inhibitory site of bovine liver glutamate dehydrogenase with incorporation of 1 mol of reagent/mol of enzyme subunit [Batra, S. P., & Colman, R. F. (1984) Biochemistry 23, 4940-4946]. The modified enzyme had lost one of the six free sulfhydryl groups per enzyme subunit as detected by 5,5'-dithiobis(2-nitrobenzoate). In the unmodified enzyme digested with trypsin, six cysteinyl peptides labeled with [14C]iodoacetic acid were detected by high-performance liquid chromatography (HPLC), whereas only five were observed in the 6-BDB-TADP-modified enzyme. A cysteinyl peptide has been isolated from modified enzyme digested with trypsin and chymotrypsin. Purification of the nucleotidyl peptide was accomplished by chromatography on phenyl boronate-agarose, followed by gel filtration on Sephadex G-25 and Bio-Gel P-4 in 50 mM ammonium bicarbonate, pH 8.0. The modified peptides were finally purified by HPLC on a C18 column using 0.1% trifluoroacetic acid with an acetonitrile gradient. By comparison of the amino acid composition and N-terminal residue of the isolated peptide with the known amino acid sequence of the enzyme, the peptide in the DPNH inhibitory site labeled by 6-BDB-TADP has been identified as the 19-membered fragment from Glu-311 to Lys-329. A unique residue, Cys-319, was identified as the reactive amino acid within the DPNH inhibitory site.  相似文献   

11.
S H Vollmer  R F Colman 《Biochemistry》1990,29(10):2495-2501
The affinity label 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-triphosphate (8-BDB-TA-5'-TP) reacts covalently with rabbit muscle pyruvate kinase, incorporating 2 mol of reagent/mol of enzyme subunit upon complete inactivation. Protection against inactivation is provided by phosphoenolpyruvate, K+, and Mn2+ and only 1 mol of reagent/mol of subunit is incorporated [DeCamp, D.L., Lim, S., & Colman, R.F. (1988) Biochemistry 27, 7651-7658]. We have now identified the resultant modified residues. After reaction with 8-BDB-TA-5'-TP at pH 7.0, modified enzyme was incubated with [3H]NaBH4 to reduce the carbonyl groups of enzyme-bound 8-BDB-TA-5'-TP and to introduce a radioactive tracer into the modified residues. Following carboxymethylation and digestion with trypsin, the radioactive peptides were separated on a phenylboronate agarose column followed by reverse-phase high-performance liquid chromatography in 0.1% trifluoroacetic acid with an acetonitrile gradient. Gas-phase sequencing gave the cysteine-modified peptides Asn162-Ile-Cys-Lys165 and Cys151-Asp-Glu-Asn-Ile-Leu-Trp-Leu-Asp-Tyr-Lys161, with a smaller amount of Asn43-Thr-Gly-Ile-Ile-Cys-Thr-Ile-Gly-Pro-Ala-Ser-Arg55. Reaction in the presence of the protectants phosphoenolpyruvate, K+, and Mn2+ yielded Asn-Ile-Cys-Lys as the only labeled peptide, indicating that inactivation is caused by modification of Cys151 and Cys48.  相似文献   

12.
We investigated the epoxidase activity of a class mu glutathione S-transferase (cGSTM1-1), using 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) as substrate. Trp209 on the C-terminal tail, Arg107 on the alpha4 helix, Asp161 and Gln165 on the alpha6 helix of cGSTM1-1 were selected for mutagenesis and kinetic studies. A hydrophobic side-chain at residue 209 is needed for the epoxidase activity of cGSTM1-1. Replacing Trp209 with histidine, isoleucine or proline resulted in a fivefold to 28-fold decrease in the k(cat)(app) of the enzyme, while a modest 25 % decrease in the k(cat)(app) was observed for the W209F mutant. The rGSTM1-1 enzyme has serine at the correponding position. The k(cat)(app) of the S209W mutant is 2. 5-fold higher than that of the wild-type rGSTM1-1. A charged residue is needed at position 107 of cGSTM1-1. The K(m)(app)(GSH) of the R107L mutant is 38-fold lower than that of the wild-type enzyme. On the contrary, the R107E mutant has a K(m)(app)(GSH) and a k(cat)(app) that are 11-fold and 35 % lower than those of the wild-type cGSTM1-1. The substitutions of Gln165 with Glu or Leu have minimal effect on the affinity of the mutants towards GSH or EPNP. However, a discernible reduction in k(cat)(app) was observed. Asp161 is involved in maintaining the structural integrity of the enzyme. The K(m)(app)(GSH) of the D161L mutant is 616-fold higher than that of the wild-type enzyme. In the hydrogen/deuterium exchange experiments, this mutant has the highest level of deuteration among all the proteins tested.We also elucidated the structure of cGSTM1-1 co-crystallized with the glutathionyl-conjugated 1, 2-epoxy-3-(p-nitrophenoxy)propane (EPNP) at 2.8 A resolution. The product found in the active site was 1-hydroxy-2-(S-glutathionyl)-3-(p-nitrophenoxy)propane, instead of the conventional 2-hydroxy isomer. The EPNP moiety orients towards Arg107 and Gln165 in dimer AB, and protrudes into a hydrophobic region formed by the loop connecting beta1 and alpha1 and part of the C-terminal tail in dimer CD. The phenoxyl ring forms strong ring stacking with the Trp209 side-chain in dimer CD. We hypothesize that these two conformations represent the EPNP moiety close to the initial and final stages of the reaction mechanism, respectively.  相似文献   

13.
S P Batra  R F Colman 《Biochemistry》1984,23(21):4940-4946
Bovine liver glutamate dehydrogenase reacts covalently with the new adenosine analogue 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate with incorporation of about 1 mol of reagent/mol of enzyme subunit. Modified enzyme completely loses its normal ability to be inhibited by high concentrations of reduced diphosphopyridine nucleotide (DPNH) (greater than 100 microM), which binds at a regulatory site distinct from the catalytic site; however, the modified enzyme retains its full activity when assayed at 100 microM DPNH in the absence of allosteric compounds. The enzyme is still activated by ADP, is inhibited by GTP (albeit at higher concentrations), and binds 1.5-2 mol of [14C]GTP/subunit. A plot of initial velocity vs. DPNH concentration for the modified enzyme, in contrast to the native enzyme, followed Michaelis-Menten kinetics. The rate constant (k) for loss of DPNH inhibition (as measured at 0.6 mM DPNH) exhibits a nonlinear dependence on reagent concentration, suggesting a reversible binding of reagent (Kd = 0.19 mM) prior to irreversible modification. At 0.1 mM 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate, k = 0.036 min-1 and is not affected by alpha-ketoglutarate, 100 microM DPNH, or GTP alone but is decreased to 0.0094 min-1 by 5 mM DPNH and essentially to zero by 5 mM DPNH plus 100 microM GTP. Incorporation after incubation with 0.25 mM 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate for 2 h at pH 7.1 is 1.14 mol/mol of subunit in the absence but only 0.24 mol/mol of subunit in the presence of DPNH plus GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Fatty acid synthase from lactating rat mammary gland is rapidly and irreversibly inhibited by S-(4-bromo-2,3-dioxobutyl)-CoA. Of the seven partial reactions catalysed by the enzyme, the inhibition of the overall catalytic activity is closely paralleled only by inhibition of the beta-oxoacyl synthase (condensing) partial reaction. Three partial reactions. Beta-oxoacyl reductase, beta-hydroxyacyl dehydratase and enoyl reductase, are inhibited to a modest degree. The three partial reactions known to involve an acyl-CoA/CoA-binding site, acetyl acyltransferase, malonyl acyltransferase and palmitoyl thioesterase, are not inhibited by S-(4-bromo-2,3-dioxobutyl)-CoA. The modification process does not cause the enzyme to dissociate into catalytically incompetent monomers. Stoichiometric studies suggest that approx. 6 mol of reagent are incorporated per mol of totally inhibited enzyme (dimer). The formation of acylated enzyme from either acetyl-CoA or malonyl-CoA protects the enzyme equally well against S-(4-bromo-2,3-dioxobutyl)-CoA. Also, pretreatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid), a thiol-specific reagent reported to block essential thiol groups in the condensing partial reaction, protects against inhibition by the reagent. On the other hand, the presence of up to 770 microM-S-acetonyl-CoA or dethio-CoA does not protect the enzyme from irreversible inhibition. Together, the results suggest that the primary inhibitory process is a bimolecular reaction resulting in alkylation of essential thiol groups in the condensing partial reaction: this process does not require the obligatory formation of a Michaelis-Menten complex of enzyme and reagent before the alkylation reaction.  相似文献   

15.
Ralat LA  Colman RF 《Biochemistry》2006,45(41):12491-12499
Alpha-tocopherol, the most abundant form of vitamin E present in humans, is a noncompetitive inhibitor of glutathione S-transferase pi (GST pi), but its binding site had not been located. Tocopherol iodoacetate (TIA), a reactive analogue, produces a time-dependent inactivation of GST pi to a limit of 25% residual activity. The rate constant for inactivation, k(obs), exhibits a nonlinear dependence on reagent concentration, with K(I) = 19 microM and k(max) = 0.158 min(-)(1). Complete protection against inactivation is provided by tocopherol and tocopherol acetate, whereas glutathione derivatives, electrophilic substrate analogues, buffers, or nonsubstrate hydrophobic ligands have little effect on k(obs). These results indicate that TIA reacts as an affinity label of a distinguishable tocopherol binding site. Loss of activity occurs concomitant with incorporation of about 1 mol of reagent/mol of enzyme subunit when the enzyme is maximally inactivated. Isolation of the labeled peptide from the tryptic digest shows that Tyr(79) is the only enzymic amino acid modified. The Y79F, Y79S, and Y79A mutant enzymes were generated, expressed, and purified. Changing Tyr(79) to Ser or Ala, but not Phe, renders the enzyme insensitive to inhibition by either tocopherol or tocopherol acetate as demonstrated by increases of at least 49-fold in K(I) values as compared to the wild-type enzyme. These results and examination of the crystal structure of GST pi suggest that tocopherols bind at a novel site, where an aromatic residue at position 79 is essential for binding.  相似文献   

16.
Glutathione transferase omega 1-1 (GSTO1-1) catalyzes the biotransformation of arsenic and is implicated as a factor influencing the age-at-onset of Alzheimer’s disease and the posttranslational activation of interleukin 1β (IL-1β). Investigation of the biological role of GSTO1-1 variants has been hampered by the lack of a specific assay for GSTO1-1 activity in tissue samples that contain other GSTs and other enzymes with similar catalytic specificities. Previous studies (P. G. Board and M. W. Anders, Chem. Res. Toxicol. 20 (2007) 149-154) have shown that GSTO1-1 catalyzes the reduction of S-(phenacyl)glutathiones to acetophenones. A new substrate, S-(4-nitrophenacyl)glutathione (4NPG), has been prepared and found to have a high turnover with GSTO1-1 but negligible activity with GSTO2-2 and other members of the glutathione transferase superfamily. A spectrophotometric assay with 4NPG as a substrate has been used to determine GSTO1-1 activity in several human breast cancer cell lines and in mouse liver and brain tissues.  相似文献   

17.
The role of the hydroxyl group of tyrosine 6 in the catalytic mechanism of isoenzyme 3-3 of rat glutathione S-transferase has been examined by x-ray crystallography and site-specific replacement of the residue with phenylalanine and evaluation of the catalytic properties of the mutant enzyme. This particuar tyrosine residue is conserved in the sequences of all of the cytosolic enzymes and is found, in crystal structures of both isoenzyme 3-3 from the mu-gene class and an isoenzyme from the pi-gene class, to be proximal to the sulfur of glutathione (GSH) or glutathione sulfonate bound at the active site. The 2.2-A structure of the binary complex of isoenzyme 3-3 and GSH indicates that the hydroxyl group of Tyr6 is located 3.2-3.5 A from the sulfur of GSH, well within hydrogen bonding distance. Removal of the hydroxyl group of Tyr6 has essentially no effect on the dissociation constant (22 +/- 3 microM) for GSH. Nevertheless the Y6F mutant exhibits a turnover number which is only about 1% that of the native enzyme when assayed at pH 6.5 with either 1-chloro-2,4-dinitrobenzene (CDNB) or 4-phenyl-3-buten-2-one. UV difference spectra of the binary enzyme-GSH complexes suggest that the predominant ionization state of GSH in the active site of the Y6F mutant is the neutral thiol (e.g. EY6F.GSH) which is in contrast to the native enzyme in which the thiol is substantially deprotonated (e.g. E.GS-). Spectrophotometric titration suggests that the pKa of the thiol is 6.9 +/- 0.3 in the E.GSH complex and greater than or equal to 8 in the EY6F.GSH binary complex. In addition, the pH dependence of kcat/KmCDNB reveals that the reactions catalyzed by the native enzyme and the Y6F mutant are dependent on a single ionization in the E.GSH and EY6F.GSH complexes with pKa = 6.2 +/- 0.1 and 7.8 +/- 0.3, respectively. The results suggest that the hydrogen bond between Tyr6 and the enzyme-bound nucleophile helps to lower the pKa of GSH in the binary enzyme-substrate complex.  相似文献   

18.
S-(4-Bromo-2,3-dioxobutyl)-CoA, a potential affinity label for enzymes possessing a receptor site(s) for short-chain acyl-CoA, was synthesized by condensing CoA and 1,4-dibromo-2,3-butanedione in acidified methanol. The new reagent was tested as an active site-directed irreversible inhibitor with four enzymes that accept a short-chain acyl-CoA as substrate. With citrate synthase (pig heart) and acetyl-CoA hydrolase (beef kidney) irreversible inhibition was observed, and the rate of inactivation obeyed first-order kinetics. Benzoyl-CoA, a reversible competitive inhibitor versus acetyl-CoA with both citrate synthase and acetyl-CoA hydrolase, protected the active site of both enzymes against the irreversible inhibitor. The new reagent was an exceptionally potent irreversible inhibitor of acetoacetyl-CoA thiolase (beef liver). Relatively low concentrations of the reagent (≥1 μm) completely inhibited the thiolase in less than 2 min. Preincubation of thiolase with acetoacetyl-CoA protected the enzyme against inhibition by S-(4-bromo-2,3-dioxobutyl)-CoA. In contrast, irreversible inhibition of l-3-hydroxyacyl-CoA dehydrogenase (pig heart) was not observed. Instead, the new reagent appeared to be a weak alternate substrate for this dehydrogenase. In all cases, the new reagent exhibited tight reversible binding at the active site since the measured Ki's (and Km) were in the range, 30 to 120 μm. It is anticipated that the new reagent will be suitable for investigating a number of acyl-CoA using enzymes by affinity labeling techniques.  相似文献   

19.
D H Ozturk  R F Colman 《Biochemistry》1991,30(29):7126-7134
The affinity label 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-triphosphate (8-BDB-TA-5'-TP) has been shown to react with bovine liver glutamate dehydrogenase in the region of the GTP-dependent NADH inhibitory site with incorporation of about 1 mol of reagent/mol of subunit [Ozturk, D. H., Safer, D., & Colman, R. F. (1990) Biochemistry 29, 7112-7118]. The modified enzyme was shown to contain only 5 free sulfhydryl groups upon 5,5'-dithiobis (2-nitrobenzoate) titration as compared with 6 in the unmodified enzyme. In the unmodified enzyme digested with trypsin, 6 cysteinyl peptides were detected by high-performance liquid chromatography upon treatment with iodo [3H]acetic acid. In contrast, only 5 (carboxymethyl)cysteinyl peptides were detected in 8-BDB-TA-5'-TP-modified enzyme. When carboxymethylated modified and unmodified enzymes were digested with thermolysin, 6 peptide sequences containing (carboxymethyl)cysteine were obtained in the unmodified enzyme, but only 5 were observed in the modified enzyme. The (carboxymethyl)cysteine which was absent in the modified enzyme was determined to be Cys-319, leading to the conclusion that 8-BDB-TA-5'-TP reacts with Cys-319, thereby preventing it from subsequent reaction with radioactive iodoacetate. It was previously reported that 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate (6-BDB-TA-5'-DP) modifies Cys-319 in this enzyme [Batra, S. P., & Colman, R. F. (1986) Biochemistry 25, 3508-3515].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We previously showed that 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic monophosphate inactivates cAMP phosphodiesterase (PDE3A); however, millimolar concentrations were needed to inactivate PDE3A because of ongoing hydrolysis. We have now synthesized a nonhydrolyzable reactive cAMP analogue, (S(p))-8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic S-(methyl)monophosphorothioate (S(p)-8-BDB-TcAMPSMe). S(p)-8-BDB-TcAMPSMe inactivates PDE3A in a time-dependent, irreversible manner, exhibiting saturation kinetics with a k(max) of (19.5 +/- 0.3) x 10(-3) min(-1) and a K(I) of 3.5 +/- 0.3 muM. To ascertain whether S(p)-8-BDB-TcAMPSMe reacts in the active site, nonhydrolyzable analogues of the substrate cAMP, or the competitive inhibitor cGMP, were included to protect against the inactivation of PDE3A. The order of effectiveness of protectants in decreasing the rate of inactivation (with K(d) values in micromolar) is as follows: S(p)-cAMPS (18) > R(p)-cGMPS (560) and S(p)-cGMPS (1260) > 5'-AMP (17 660), R(p)-cAMPS (30 110), and 5'-GMP (42 170). We docked S(p)-8-BDB-TcAMPSMe into PDE3A, based on the structural model of PDE3A-cAMP and the kinetic data from site-directed mutants. The S(p)-8-BDB-TcAMPSMe fits into the active site in the model. These results suggest that inactivation of PDE3A by the affinity reagent is a consequence of reaction at the overlap between cAMP and cGMP binding regions in the active site. S(p)-8-BDB-TcAMPSMe has proven to be an effective active site-directed irreversible cAMP affinity label for platelet PDE3A and can be used to identify amino acids in the active site of PDE3A as well as in other cAMP phosphodiesterases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号