首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
Agrobacterium tumefaciens virulence genes are induced by plant signals through the VirA-VirG two-component regulatory system. The VirA protein is a membrane-spanning sensor molecule that possesses an autophosphorylating activity, and the VirG protein is a sequence-specific DNA-binding protein. In this report, we demonstrate that the VirG protein is phosphorylated by the VirA protein and that the phosphate is directly transferred from the phosphorylated VirA molecule (phosphohistidine) to the VirG protein. The chemical stability of the phospho-VirG bond suggested that the VirG protein was phosphorylated at the aspartate and/or glutamate residue. The phosphorylated VirG protein was reduced with tritiated sodium borohydride and subjected to proteolytic digestion with the Achromobacter protease I enzyme. The resulting peptide fragments were separated by C8 reversed-phase high-pressure liquid chromatography, and the tritium-labeled peptide was sequenced. Amino acid sequence data showed that the aspartate residue at position 52 was the only site phosphorylated. Changing this aspartate into asparagine resulted in a nonphosphorylatable and biologically nonfunctional gene product. As a control, a randomly chosen aspartate was changed into an asparagine (position 72), and no effect on its phosphorylation or biological activity was observed. Unlike its homologs, including CheA-CheY, EnvZ-OmpR, and NtrB-NtrC, the phospho-VirG molecule was very stable in vitro. The possible implications of these observations and the function of VirG phosphorylation in vir gene activation are discussed.  相似文献   

6.
7.
8.
The VirA/VirG two-component regulatory system of Agrobacterium tumefaciens regulates expression of the virulence (vir) genes that control the infection process leading to crown gall tumor disease on susceptible plants. VirA, a membrane-bound homodimer, initiates vir gene induction by communicating the presence of molecular signals found at the site of a plant wound through phosphorylation of VirG. Inducing signals include phenols, monosaccharides, and acidic pH. While sugars are not essential for gene induction, their presence greatly increases vir gene expression when levels of the essential phenolic signal are low. Reception of the sugar signal depends on a direct interaction between ChvE, a sugar-binding protein, and VirA. Here we show that the sugar signal received in the periplasmic region of one subunit within a VirA heterodimer can enhance the kinase function of the second subunit. However, sugar enhancement of vir gene expression was vector dependent. virA alleles expressed from pSa-derived vectors inhibited signal transduction by endogenous VirA. Inhibition was conditional, depending on the induction medium and the virA allele tested. Moreover, constitutive expression of virG overcame the inhibitory effect of some but not all virA alleles, suggesting that there may be more than one inhibitory mechanism.  相似文献   

9.
VirA and VirG activate the Agrobacterium tumefaciens vir regulon in response to phenolic compounds, monosaccharides, and acidity released from plant wound sites. VirA contains an amino-terminal periplasmic domain and three cytoplasmic domains: a linker, a protein kinase, and a phosphoryl receiver. We constructed internal deletions of virA that truncate one or more domains and tested the ability of the resulting proteins to mediate environmentally responsive vir gene activation in vivo. The periplasmic domain is required for sensing of monosaccharides (in agreement with earlier results), while the linker domain is required for sensing of phenolic compounds and acidity. The phosphoryl receiver domain of VirA plays an inhibitory role in signal transduction that may be modulated by phosphorylation. The carboxy terminus of the protein was also dispensable for tumorigenesis, while the periplasmic domain was required.  相似文献   

10.
11.
12.
The transmembrane sensor protein VirA activates VirG in response to high levels of acetosyringone (AS). In order to respond to low levels of AS, VirA requires the periplasmic sugar-binding protein ChvE and monosaccharides released from plant wound sites. To better understand how VirA senses these inducers, the C58 virA gene was randomly mutagenized, and 14 mutants defective in vir gene induction and containing mutations which mapped to the input domain of VirA were isolated. Six mutants had single missense mutatiions in three widely separated areas of the periplasmic domain. Eight mutants had mutations in or near an amphipathic helix, TM1, or TM2. Four of the mutations in the periplasmic domain, when introduced into the corresponding A6 virA sequence, caused a specific defect in the vir gene response to glucose. This suggests that most of the periplasmic domain is required for the interaction with, or response to, ChvE. Three of the mutations from outside the periplasmic domain, one from each transmembrane domain and one from the amphiphathic helix, were made in A6 virA. These mutants were defective in the vir gene response to AS. These mutations did not affect the stability or topology of VirA or prevent dimerization; therefore, they may interfere with detection of AS or transmission of the signals to the kinase domain. Characterization of C58 chvE mutants revealed that, unlike A6 VirA, C58 VirA requires ChvE for activation of the vir genes.  相似文献   

13.
The virA and virG gene products are required for the regulation of the vir regulon on the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. VirA is a membrane-associated protein which is homologous to the sensor molecules of other two-component regulatory systems. We overproduced truncated VirA proteins in Escherichia coli by deleting different lengths of the 5'-coding region of the virA gene and placing these genes under lacZ control. These proteins were purified from polyacrylamide gels and renatured. The renatured proteins became radiolabeled when they were incubated with [gamma-32P]ATP but not with [gamma-32P]GTP or [alpha-32P]ATP, which suggests an ATP gamma-phosphate-specific autophosphorylation. The smallest VirA protein, which retained only the C-terminal half of the protein, gave the strongest autophosphorylation signal, which demonstrates that the C-terminal domain has the autophosphorylation site. The phosphorylated amino acid was identified as phosphohistidine, and a highly conserved histidine was found in all of the VirA homologs. When this histidine was changed to glutamine, which cannot be phosphorylated, the resulting VirA protein lost both its ability to autophosphorylate and its biological function as a vir gene regulator. Results of this study indicate that VirA autophosphorylation is required for the induction of the vir regulon and subsequent tumor induction on plants by A. tumefaciens.  相似文献   

14.
15.
16.
17.
The VirG protein is a positive regulator for the virulence genes of which expression is induced by a plant factor, and is essential for Agrobacterium pathogenicity on dicotyledonous plants. The VirG protein of the hairy-root-inducing plasmid A4 was overproduced in Escherichia coli cells, and purified to homogeneity. DNase I footprinting experiments revealed that the purified VirG protein was bound to the upstream region of virulence genes including the phased vir box sequences, which had been presumed to be the VirG recognition signal from the sequence analysis. In dimethyl sulfate footprinting, the VirG protein specifically protected the guanine residues within every vir box sequence. It was concluded that the VirG protein was bound to the phased vir box sequences from the major groove along one side of double-helical DNA.  相似文献   

18.
Response regulators are the ultimate modulators in two-component signal transduction pathways. The N-terminal receiver domains generally accept phosphates from cognate histidine kinases to control output. VirG for example, the response regulator of the VirA/VirG two-component system in Agrobacterium tumefaciens, mediates the expression of virulence genes in response to plant host signals. Response regulators have a highly conserved structure and share a similar conformational activation upon phosphorylation, yet the sequence and structural features that determine or perturb the cooperative activation events are ill defined. Here we use VirG and the unique features of the Agrobacterium system to extend our understanding of the response regulator activation. Two previously isolated constitutive VirG mutants, VirGN54D and VirGI77V/D52E, provide the foundation for our studies. In vivo phosphorylation patterns establish that VirGN54D is able to accumulate phosphates from small-molecule phosphate donors, such as acetyl phosphate, while the VirGI77V/D52E allele carries conformational changes mimicking the active conformation. Further structural alterations on these two alleles begin to reveal the changes necessary for response regulator activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号