首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Organic agriculture is increasing in popularity worldwide due to the rapidly growing market for organic products. In organic production, insects present a major pest challenge that negatively impacts crop health and yield. To successfully manage an organic farmland, an effective insect pest management program is key. In this review, we first describe the approaches currently used for pest management in organic farming. Next, we review natural plant defense mechanisms, especially those based on plant volatile organic compounds. Chemically complex, plant volatiles have multiple ecological roles in plant-insect interactions including attracting pollinators, acting as cues for foraging herbivores as well as functioning as direct defense, indirect defense, or interplant priming. Based on the ecological roles of plant volatiles, we then discuss in-depth how pest management may be improved through a variety of strategies including using resistant cultivars, polyculture, using beneficial microorganisms such as mycorrhizal fungi and endophytes, and using plant-derived pesticides, all of which are reviewed in the context of plant volatiles. Lastly, integration of these different strategies based on the trait of plant volatiles for a successful and sustainable pest management program in organic farming is discussed.  相似文献   

2.
Plant cytochromes P450 (P450s) participate in a variety of biochemical pathways to produce a vast diversity of plant natural products. The number of P450 genes in plant genomes is estimated to be up to 1% of the total gene annotations of each plant species, implying that plants are huge sources for various P450-dependent reactions. Plant P450s catalyze a wide variety of monooxygenation/hydroxylation reactions in secondary metabolism, and some of them are involved in unusual reactions such as methylenedioxy-bridge formation, phenol coupling reactions, oxidative rearrangement of carbon skeletons, and oxidative C–C bond cleavage. Here, we summarize unusual P450 reactions in various plant secondary metabolisms, and describe their proposed reaction mechanisms.  相似文献   

3.
The organic viticulture assumes a decisive role in the national agricultural sector. More impelling problems in the management of organic vineyards are represented from the plants pathology defence and particularly of Plasmopara viticola containment. Copper represents one of the few usable fungicides in the organic farming and the only effective against downy mildew. With Regulation EC n. 473/2002, fixed maximum quantity usable of copper compounds, owing to the environment problems due to the copper accumulation in the soil. To reduce quantity of metal copper or replace it with natural products, are conducted field trials with copper compounds at a low rate or alternative to copper products. Besides, we are estimating possibility to reduce the operations against P. viticola optimizing fungicidal treatments. Field trials in the organic farms located near Rome, have been carried out. Guidelines EPPO/OEPP PP 1/31 (3) have been carried out. The results of the trials have showed that, using cupric products with low metallic content, to reduce copper quantities used, always allowed to respect the limits established by Regulation EC. The alternative products that were investigated have not guaranteed, instead, an adequate protection in high pressure of grapevine downy mildew. It was possible to reduce treatments against P. viticola through control of different environmental parameters. The trials confirm that the copper is indispensable for plant protection in organic farming as it is not possible to replace it with natural extracts substances. We can reduce, instead, the copper quantities used trough the use of new products with low quantity metal copper or through the evaluation of climatic and pedologic data that allow to rationalize the fungicidal treatments.  相似文献   

4.
Molecular farming of pharmaceuticals in plants has the potential to provide almost unlimited amounts of recombinant proteins for use in disease diagnosis, prevention or treatment. Tobacco has been and will continue to be a major crop for molecular farming and offers several practical advantages over other crops. It produces significant leaf biomass, has high soluble protein content and is a non-food crop, minimizing the risk of food-chain contamination. This, combined with its flexibility and highly-efficient genetic transformation/regeneration, has made tobacco particularly well suited for plant-based production of biopharmaceutical products. The goal of this review is to provide an update on the use of tobacco for molecular farming of biopharmaceuticals as well the technologies developed to enhance protein production/purification/efficacy. We show that tobacco is a robust biological reactor with a multitude of applications and may hold the key to success in plant molecular farming.  相似文献   

5.
In this paper we describe the impact of the abandonment of traditional farming practices on butterflies and their habitats in traditional, often montane, pastoral systems. We link these declines to socioeconomic factors: illustrating how the failure of the CAP to support traditional farming leads to structural changes in farming enterprises??features which may be obscured by crude statistics on stock. We then call for the scheduled CAP reforms in 2013 to be radically realigned to support rather than destroy biodiversity so that any new EU agri-biodiversity commitments have an effective funding stream to support them.  相似文献   

6.
Plant systems utilize a diverse array of cytochrome P450 monooxygenases (P450s) in their biosynthetic and detoxification pathways. The classic forms of these enzymes are heme-dependent mixed function oxidases that utilize NADPH or NADH and molecular oxygen to produce functionalized organic products. The nonclassical forms are monooxygenases that either do not utilize flavoproteins for dioxygen activation or fail to incorporate molecular oxygen into their final product. Biosynthetic P450s play paramount roles in the synthesis of lignin intermediates, sterols, terpenes, flavonoids, isoflavonoids, furanocoumarins, and a variety of other secondary plant products. Other catabolic P450s metabolize toxic herbicides and insecticides into nontoxic products or, conversely, activate nontoxic substances into toxic products. Biochemical and molecular characterizations on a number of plant P450s have indicated that the relationships between these heme proteins and their substrates are at least as complex as those that exist in mammalian systems. Examples now exist of plant P450s that metabolize: a narrow range of substrates to yield different products, a single substrate to yield different products, multiple substrates to yield the same product, or a single substrate sequentially to yield discrete intermediates in the biosynthesis of a single product. Extensive divergence of catalytic site as well as noncatalytic site residues accounts for the high degree of primary structure variation in the P450 gene superfamily and the diverse array of substrates synthesized and/or detoxified by these proteins. Classic P450s still retain a highly conserved F-G-R-C-G motif in their catalytic site and conserved amino acids in their oxygen binding pocket; nonclassical P450s diverge at several of these positions. A broad range of cloning and transient expression strategies are suitable for plant P450 studies and these have allowed for the isolation and characterization of a number of P450 cDNAs and genes. Because many of these sequences have been cloned only recently, much remains to be learned about the substrate specificities of P450 reactions in plants and the mechanisms by which their genes are regulated.  相似文献   

7.
Plants are emerging as a promising alternative to conventional platforms for the large-scale production of recombinant proteins. This field of research, known as molecular farming, is developing rapidly and several plant-derived recombinant proteins are already in advanced clinical trials. However, the full potential of molecular farming can only be realized if we gain a fundamental understanding of biological processes regulating the production and accumulation of functional recombinant proteins in plants. Recent studies indicate that species- and tissue-specific factors as well as plant physiology can have a significant impact on the amount and quality of the recombinant product. More detailed comparative studies are needed for each product, including the analysis of expression levels, biochemical properties, in vitro activity and subcellular localization. In this review we include the first results from an extensive comparative study in which the highly glycosylated enzyme phytase (from the fungus Aspergillus niger) was produced in different plant species (including tobacco and the model legume Medicago truncatula). Special emphasis is placed on M. truncatula, whose leaves accumulated the highest levels of active phytase. We discuss the potential of this species as a novel production host.  相似文献   

8.
During the last two decades, DNA-based molecular markers have been extensively utilized for a variety of studies in both plant and animal systems. One of the major uses of these markers is the construction of genome-wide molecular maps and the genetic analysis of simple and complex traits. However, these studies are generally based on linkage analysis in mapping populations, thus placing serious limitations in using molecular markers for genetic analysis in a variety of plant systems. Therefore, alternative approaches have been suggested, and one of these approaches makes use of linkage disequilibrium (LD)-based association analysis. Although this approach of association analysis has already been used for studies on genetics of complex traits (including different diseases) in humans, its use in plants has just started. In the present review, we first define and distinguish between LD and association mapping, and then briefly describe various measures of LD and the two methods of its depiction. We then give a list of different factors that affect LD without discussing them, and also discuss the current issues of LD research in plants. Later, we also describe the various uses of LD in plant genomics research and summarize the present status of LD research in different plant genomes. In the end, we discuss briefly the future prospects of LD research in plants, and give a list of softwares that are useful in LD research, which is available as electronic supplementary material (ESM) Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

9.
Phosphorus (P)-deficiency is a significant challenge for agricultural productivity on many highly P-sorbing weathered and tropical soils throughout the world. On these soils it can be necessary to apply up to five-fold more P as fertiliser than is exported in products. Given the finite nature of global P resources, it is important that such inefficiencies be addressed. For low P-sorbing soils, P-efficient farming systems will also assist attempts to reduce pollution associated with P losses to the environment. P-balance inefficiency of farms is associated with loss of P in erosion, runoff or leaching, uneven dispersal of animal excreta, and accumulation of P as sparingly-available phosphate and organic P in the soil. In many cases it is possible to minimise P losses in runoff or erosion. Uneven dispersal of P in excreta typically amounts to ~5% of P-fertiliser inputs. However, the rate of P accumulation in moderate to highly P-sorbing soils is a major contributor to inefficient P-fertiliser use. We discuss the causal edaphic, plant and microbial factors in the context of soil P management, P cycling and productivity goals of farms. Management interventions that can alter P-use efficiency are explored, including better targeted P-fertiliser use, organic amendments, removing other constraints to yield, zone management, use of plants with low critical-P requirements, and modified farming systems. Higher productivity in low-P soils, or lower P inputs in fertilised agricultural systems can be achieved by various interventions, but it is also critically important to understand the agroecology of plant P nutrition within farming systems for improvements in P-use efficiency to be realised.  相似文献   

10.
Given the essential role of proteomics in understanding the biology of plants, we are establishing a global plant proteomics organization to properly organize, preserve and disseminate collected information on plant proteomics. We call this organization 'International Plant Proteomics Organization (INPPO; http://www.inppo.com).' Ten initiatives of INPPO are outlined along with how to address them in multiple phases. As our vision is global, we sincerely hope the scientific communities around the world will come together to support and join INPPO.  相似文献   

11.
We consider the idea that foraging animals seek to achieve a certain threshold intake of food per day rather than maximising mean energy intake. Earlier experiments and theoretical work have shown that under these conditions animals should respond to variance in reward. We identify six possible sources of such variance and produce models for five of them (the sixth is already solved). These models describe (1) whether to feed in habitats possessing small or large prey, (2) whether to feed on clumped or dispersed prey, (3) which prey items to eat, (4) the effects of misidentification of prey selection, (5) whether to feed singly or join a flock and (6) when to move between patches when the travel time between them is variable. The results are often radically different from those of traditional models and we discuss their biological significance.  相似文献   

12.
The production of biopharmaceutical proteins in plants requires efficient downstream processing steps that remove impurities such as host cell proteins (HCPs) and adventitious endotoxins produced by bacteria during transient expression. We therefore strived to develop effective routines for endotoxin removal from plant extracts and the subsequent use of the extracts to generate antibodies detecting a broad set of HCPs. At first, we depleted the superabundant protein ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RuBisCO) for which PEG precipitation achieved the best results, preventing a dominant immune reaction against this protein. We found that a mixture of sera from rabbits immunized with pre‐depleted or post‐depleted extracts detected more HCPs than the individual sera used alone. We also developed a powerful endotoxin removal procedure using Polymyxin B for extracts from wild type plants or a combination of fiber‐flow filtration and EndoTrap Blue for tobacco plants infiltrated with Agrobacterium tumefaciens. The antibodies we generated will be useful for quality and performance assessment in future process development and the methods we present can easily be transferred to other expression systems rendering them useful in the field of plant molecular farming.  相似文献   

13.
Occurrence of intervarietal or interspecific natural crosses has been reported for many crop plants in traditional farming systems, underlining the potential importance of this source of genetic exchange for the dynamics of genetic diversity of crop plants. In this study, we use microsatellite loci to investigate the role of volunteer seedlings (plants originating from unmanaged sexual reproduction) in the dynamics of genetic diversity of cassava (Manihot esculenta Crantz), a vegetatively propagated crop, in a traditional farming system in Guyana. A previous field study showed that farmers incorporate such plants into the germplasm for vegetative propagation, and that many of them are likely to be assigned by farmers to recognized varieties. Under strict vegetative propagation clonality of varieties is expected. The high proportion of polyclonal varieties observed suggests that incorporation of seedlings into the germplasm for propagation is a frequent event. The molecular variability assessed with microsatellite markers shows that there is high differentiation among heterozygous varieties, whereas populations of seedlings do not depart from the proportions expected under Hardy-Weinberg assumptions. Assignment of seedlings to a recognized variety on the basis of morphological similarity greatly increases genetic diversity within the variety. We argue that recombination and gene flow play a major role in the dynamics of genetic diversity of cassava in traditional farming systems. Documenting unmanaged sexual reproduction and its genetic consequences is a prerequisite for defining strategies of in situ conservation of crop plant genetic resources.  相似文献   

14.
Recent increases in EU commercial and academic activities in molecular farming, and the proximity to market-stage of the first plant-made pharmaceuticals, represent a call to action for EU regulators. Drawing on the North American debate on molecular farming, it will be argued that both the rationale and the risks of molecular farming will differ significantly from those of first generation GM crops. Based on these differences, the suitability of the existing regulatory frameworks, which were developed in response to the arrival of earlier products, is discussed, and specific options for adapting the already complex EU regulatory system to cater for molecular farming are examined.  相似文献   

15.
16.
Hundreds of bacterial genomes including the genomes of dozens of plant pathogenic bacteria have been sequenced. These genomes represent an invaluable resource for molecular plant pathologists. In this review, we describe different approaches that can be used for mining bacterial genome sequences and examples of how some of these approaches have been used to analyse plant pathogen genomes so far. We review how genomes can be mined one by one and how comparative genomics of closely related genomes releases the true power of genomics. Databases and tools useful for genome mining that are publicly accessible on the Internet are also described. Finally, the need for new databases and tools to efficiently mine today's plant pathogen genomes and hundreds more in the near future is discussed.  相似文献   

17.
The unicellular green alga Chlamydomonas reinhardtii is both an invaluable model organism for plant biology and an attractive biotechnological production system. Despite the availability of efficient methods for introduction of foreign genes into the nuclear genome of the alga, transgene expression levels are usually very poor. This is a serious limitation that has severely hampered both post-genomics research in Chlamydomonas and use of the alga in molecular farming. Here we report a solution to this problem. We have designed a genetic screen that facilitates isolation of algal strains that efficiently express introduced transgenes. The levels of accumulation of foreign protein in our expression strains are almost uniformly high in all transgenic clones and are little influenced by position effects. The possibility of expressing transgenes to high levels will greatly facilitate post-genomics research in Chlamydomonas , and will also boost exploitation of the alga as an inexpensive production host for biopharmaceuticals and other valuable compounds.  相似文献   

18.
B. Lemaitre  S. Ronsseray    D. Coen 《Genetics》1993,135(1):149-160
The transposition of P elements in Drosophila melanogaster is regulated by products encoded by the P elements themselves. The P cytotype, which represses transposition and associated phenomena, exhibits both a maternal effect and maternal inheritance. The genetic and molecular mechanisms of this regulation are complex and not yet fully understood. In a previous study, using P-lacZ fusion genes, we have shown that P element regulatory products were able to inhibit the activity of the P promoter in somatic tissues. However, the repression observed did not exhibit the maternal effect characteristic of the P cytotype. With a similar approach, we have assayed in vivo the effect of P element regulatory products in the germline. We show that the P cytotype is able to repress the P promoter in the germline as well as in the soma. Furthermore, this repression exhibits a maternal effect restricted to the germline. On the basis of these new observations, we propose a model for the mechanism of P cytotype repression and its maternal inheritance.  相似文献   

19.
20.
The Creole goat is a local meat breed well adapted to the tropical environment of Guadeloupe, a French island in the Caribbean. A survey of 47 goat farmers was conducted in May 2008 to describe the Guadeloupean goat farming systems. It was the preliminary step for the implementation of a breeding programme for Creole goats. Farmers had 31 does on average. A small number (4%) kept only Creole goats. Most of them (62%) had a mixed herd of Creole and crossbreds. One-third of them (34%) reared only crossbred goats. Farmers appreciate the rusticity and resistance of the Creole goat but consider its growth as too slow. The most desired traits for goat selection were conformation and growth for males (77% of the answers). These traits were also important for females (30% of the answers). Maternal qualities were also frequently cited (maternal behaviour 23%, reproduction 20% and milk production 17%). Disease resistance was not seen as an important trait (10% and 7% of the answers for bucks and does, respectively). A typology constituted of five groups of farmers was also created. Farmers of three groups were retained to participate at a selection programme. They kept Creole goats and have expressed a strong willingness to join a selection programme. The results of the survey suggest that a breeding programme should mostly focus on the Creole goat as a maternal breed. Real consideration should be given to disease resistance. The Creole goat has indeed a key role to play in the sustainability of local farming systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号