首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni‐based catalysts are traditionally considered unsuitable for the Fischer–Tropsch syntheses of olefins, due to the very strong hydrogenation ability of metallic Ni. Herein, this paradigm is challenged. A series of MnO supports nickel catalysts (denoted herein as Ni‐x) are fabricated by H2 reduction of a nickel‐manganese mixed metal oxide at temperatures (x) ranging from 250 to 600 °C. The Ni‐500 catalyst displays unprecedented performance for photothermal CO hydrogenation to olefins, with an olefin selectivity of 33.0% under ultraviolet–visible irradiation. High‐resolution transmission electron microscopy, X‐ray absorption spectroscopy (XAS), and X‐ray diffraction analyses reveal that the Ni‐x catalysts contain metallic Ni nanoparticles supported by MnO. X‐ray photoelectron spectroscopy and XAS establish that electron transfer from MnO to the Ni0 nanoparticles is responsible for modifying the electronic structure of nickel (creating Niδ? states), thereby shifting the CO hydrogenation selectivity toward light olefins. Further, density functional theory calculations show that this electron transfer lowers the adsorption energies of olefins on Ni surfaces, thus minimizing the undesirable deep hydrogenation reactions to higher alkanes. This study conclusively demonstrates that MnO‐modified Ni‐based catalyst systems can be highly selective for CO hydrogenation to light olefins.  相似文献   

2.
1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone 4‐ethyl‐thiosemicarbazone (HL) and its copper(II), vanadium(V) and nickel(II) complexes: [Cu(L)(Cl)]·C2H5OH·( 1 ), [Cu(L)2]·H2O ( 2 ), [Cu(L)(Br)]·H2O·CH3OH ( 3 ), [Cu(L)(NO3)]·2C2H5OH ( 4 ), [VO2(L)]·2H2O ( 5 ), [Ni(L)2]·H2O ( 6 ), were synthesized and characterized. The ligand has been characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The tridentate nature of the ligand is evident from the IR spectra. The copper(II), vanadium(V) and nickel(II) complexes have been characterized by different physico‐chemical techniques such as molar conductivity, magnetic susceptibility measurements and electronic, infrared and electron paramagnetic resonance spectral studies. The structures of the ligand and its copper(II) ( 2 , 4 ), and vanadium(V) ( 5 ) complexes have been determined by single‐crystal X‐ray diffraction. The composition of the coordination polyhedron of the central atom in 2 , 4 and 5 is different. The tetrahedral coordination geometry of Cu was found in complex 2 while in complex 4 , it is square planar, in complex 5 the coordination polyhedron of the central ion is distorted square pyramid. The in vitro antibacterial activity of the complexes against Escherichia coli, Salmonella abony, Staphylococcus aureus, Bacillus cereus and the antifungal activity against Candida albicans strains was higher for the metal complexes than for free ligand. The effect of the free ligand and its metal complexes on the proliferation of HL‐60 cells was tested.  相似文献   

3.
Flexible and 3D carbon aerogels (CAs) composed of carbon nanotubes (CNTs) with carbon shell‐confined binary palladium–nickel (Pdx–Niy) nanocatalysts on carbon fibers (Pdx–Niy/NSCNT/CA) have been developed through a facile chemical vapor deposition method. The 3D porous carbon network and the synergistic effect of carbon shell‐confined bimetal nanoparticles of rationally constructed aerogels facilitate enhanced electrocatalytic and antipoisoning activities toward ethylene glycol (EG) oxidation reaction compared to the commercial Pt/C catalyst. With the 3D morphological features and direct growth of Pd–Ni bimetallic nanoparticles encapsulated CNTs on carbon fibers, the Pd52–Ni48/NSCNT/CA delivers a maximum microfluidic direct ethylene glycol fuel cell (µDEGFC) power density and durability of, respectively, 62.8 mW cm?2 and 60 h. The superior performance observed, with Pd52–Ni48/NSCNT/CA amongst the catalysts reported in the literature, opens an exciting research avenue towards powering next‐generation, portable electronics.  相似文献   

4.
Aprajita Chauhan 《Oecologia》1990,84(3):289-294
Summary Fumigation experiments with SO2 performed on the seedlings of three plant species viz, tomato (Lycopersicon esculentum), mung bean (Vigna radiata) and maize (Zea mays) resulted in the emission of volatiles. Acetaldehyde and ethanol were produced in the fumigated plants. In addition, there was also an increased production of ethylene and ethane. The production of these volatiles was positively correlated to the SO2 concentrations of 4.2 and 8.3 mol m–3 (0.1 and 0.2 ppm). Ethylene was emitted primarily from SO2-stressed yet healthy leaves, whereas high ethane levels were detected in leaves with visible injury symptoms. However, with the appearance of visible injury symptoms, there was a decline in ethylene, acetaldehyde and ethanol emissions. Synthesis of ethylene and ethane seems to be a result of different metabolic pathways. Ethane evolution and its inhibition by antioxidants indicate SO2-mediated lipid peroxidation by free radical species formed during sulphite oxidation. Perturbation in the cellular respiratory machinery results in the formation of acetaldehyde and ethanol. Since the rates of emissions of ethane, acetaldehyde and ethanol fromplant species were positively correlated to their relative resistance to SO2, the production of these gases could be used as a reliable diagnostic tool for biomonitoring air pollution (SO2) stress.Abbreviations ADH alcohol dehydrogenase - NaHSO3 sodium metabisulphite - O 2 superoxide radical - OH hydroxyl radical - pO2 oxygen partial pressure - SO2 sulphur dioxide - SO 3 sulphite radical - SOD superoxide dismutase  相似文献   

5.
Methanogenesis by a Syntrophomonas wolfei/ Methanospirillum hungatei coculture was inhibited in presence of ethylene and the hydrogenation catalyst Pd-BaSO4. However, butyrate oxidation by S. wolfei continued and ethylene was reduced to ethane. Per mol of butyrate oxidized, 2.4 mol acetate was produced and 0.8 mol ethylene was reduced. Acetylene, propylene and butene were less effective as H2 acceptors than ethylene, and addition of bromoethanesulfonic acid was necessary to inhibit methanogenesis in the presence of the two longer-chain olefins. Other hydrogenation catalysts were less effective in the order Pd-charcoal < PE-asbestos < Pd-PEI beads < Pt-Al2O3, Pd-CaCO3. Optimal ethylene hydrogenation was achieved with still incubation in presence of 7.2 mg Pd-BaSO4 and 0.7 g sand per ml medium. The higher catabolic rate of S. wolfei in presence of the methanogen indicated that the biological H2 removal mechanism was more efficient than the catalytic olefin reduction.Abbreviations BES bromoethane sulfonic acid - VFA volatile fatty acid  相似文献   

6.
We compare herein the scope of three copper (I) catalysts on the synthesis of various 1,4-disubstitued-1,2,3-triazolo-carbanucleosides through a microwave (and thermic) assisted Huisgen 1,3-dipolar cycloaddition. The tetrakis(acetonitrile)copper hexafluorophosphate ([Cu(CH 3 CN)4]PF 6 ), the imidazoline(mesythyl)copper bromide (Imes)CuBr, and the copper/copper sulfate Cu(0)/CuSO 4 (II) mixture have been chosen for this study. Their influence in a catalytic amount will be analyzed according to the substituent of the alkyne, the solvent, or the heating method.  相似文献   

7.
The novel palladium phosphino-thioether P-S chelate complex, [PdCl2{MeSC6H4-2-(CH2PPh2)}] (3) is a highly efficient catalyst for the olefinic coupling of aryl bromo and iodo compounds to olefins under aerobic conditions, leading to more than 106 turnovers for the reactions with bromo and iodo benzenes.  相似文献   

8.
A homologous series of β-brominated porphyrins derived from meso-tetrakis(4-carbomethoxyphenyl)porphyrinatomanganese(III) chloride, i.e., Mn(III)(BrxTCMPP)Cl (x = 0, 2, 4, 6, and 8), was prepared and investigated as cytochrome P450 models. Hydroxylations of cyclohexane by iodosylbenzene (PhIO) and iodobenzene diacetate (PhI(OAc)2) in the presence or absence of water were carried out as P450 model reactions. The influence of the degree of β-bromination of the macrocycle on the UV-vis spectra, the Mn(III)/Mn(II) reduction potential, and the catalytic properties of the Mn(III)(BrxTCMPP)Cl (x = 0, 2, 4, 6, and 8) series were examined. The catalytic efficiency does not correlate with the Mn(III)/Mn(II) reduction potential and shows a bell-shaped behavior, where the best results are achieved with the hexabrominated complex. Better hydroxylation yields were achieved by using PhI(OAc)2 as oxygen donor, but at expenses of catalyst recovery; addition of water to this system resulted in a increase in the reaction rate. Recycling of the more oxidatively robust complexes Mn(III)(Br6TCMPP)Cl and Mn(III)(Br8TCMPP)Cl is feasible when using PhIO as oxygen donor. Selectivity and UV-vis data suggested that hydroxylation by both PhIO and PhI(OAc)2 share closely related active species and mechanism. We also show that the Mn(III)/Mn(II) reduction potentials are inappropriate predictors of P450-type activity of Mn porphyrin-catalyzed oxidations.  相似文献   

9.
A key intermediate, 2-isocyano-3-hydroxybutyrate (III) was isolated from a reaction of isocyanoacetate (I) with acetaldehyde (II) in the presence of Et3N. It was found that III was readily converted into 2-isocyanocrotonate (V) and 2-isocyano-2-(1′-hydroxyethyl)-3-hydroxybutyrate (VI) which are undesirable compounds for the synthesis of threonine. However, by use of a metal catalyst (e.g. NiCl2 or PdCl2), the isocyano-hydroxy compound (III) was selectively converted into 5-methyl-4-alkoxycarbonyl-2-oxazoline (IV) which is an important precursor of threonine. Furthermore, chemical properties of IV were examined; the results suggested that cis-oxazoline was relatively sensitive to acid, base and heat.

On the basis of these results, the reaction of I with II was carried out using Et3N-PdCl2 as a catalyst to obtain threo-threonine (85% purity) in a good yield (85%).  相似文献   

10.
Among five hydrogenation catalysts, palladium on charcoal was the most reactive one when suspended in anaerobic culture medium, and Lindlar catalyst (Pd on CaCO3) was the most reactive one when suspended in the gas phase of culture tubes. Palladium on charcoal in the culture medium (40 to 200 mg 10 ml−1) completely inhibited growth of Neocallimastix frontalis and partly inhibited Ruminococcus albus. Lindlar catalyst (40 to 200 mg per tube) suspended in a glass pouch above the culture medium did not affect the rate of cellulose degradation or the ratio of fermentation products by these organisms. Acetylene added to tubes containing Lindlar catalyst in pouches, and either of the two organisms in monoculture or coculture with Methanospirillum hungatei, was reduced to ethylene and then ethane, followed by hydrogen production. Similar results were obtained with 1-pentene. Neither acetylene nor 1-pentene affected cellulose degradation but both inhibited methanogenesis. In the presence of Lindlar catalyst and propylene or 1-butene, fermenter-methanogen cocultures continued to produce methane at the same rate as controls and no olefin reduction occurred. Upon addition of bromoethanesulfonic acid, methanogenesis stopped and olefin reduction took place followed by hydrogen evolution. In a gas mixture consisting of propylene, 1-butene, and 1-pentene, the olefins were reduced at rates which decreased with increasing molecular size. These results demonstrate the technical feasibility of combining in one reactor the volatile fatty acid production by anaerobic digestion with chemical catalyst-mediated reductions, using the valuable by-product hydrogen.  相似文献   

11.
Copper(II) ,-dicarboxylate complexes of general formulae, [Cu(O2C(CH2)nCO2)]·xH2O, [Cu(O2C(CH2)nCO2) (phen)2xH2O and [Cu(O2C(CH2)nCO2)(bipy)yxH2O (n=1–8; y=1, 2; phen = 1,10-phenanthroline; bipy = 2,2-bipyridine) were synthesised. These copper complexes, some related manganese(II) complexes and the metal-free ligands were screened in vitro for their ability to inhibit the growth of Candida albicans. Metal-free 1,10-phenanthroline and all of the copper(II) and manganese(II) phenanthroline complexes were potent growth inhibitors, with only one bipyridine complex, [Cu(O2C(CH2)CO2)(bipy)2]·2H2O, having moderate activity. The remaining substances were effectively inactive. Complexes which were active against C. albicans also proved effective against C. glabrata, C. tropicalis and C. kreusi with the manganese complexes retaining superior activity. For the phenanthroline complexes the active drug species is thought to be the dication [M(phen)2(H2O)n]2+ (M = Cu, Mn). Escherichia coli and Staphylococcus aureus were resistant to all of the metal complexes and also to metal-free 1,10-phenanthroline. Only the copper phenanthroline complexes showed intermediate activity against Pseudomonas aeruginosa.  相似文献   

12.
The compound [Cu2(bipy)2(OH)2](C4O4)·5.5H2O, where bipy and C4O42− correspond to 2,2′-bipyridyl and squarate (dianion of 3,4-dihydroxy-3-cyclo- butene-1,3-dione) respectively, has been synthesized. Its magnetic properties have been investigated in the 2–300 K temperature range. The ground state is a spin-triplet state, with a singlet-triplet separation of 145 cm−1. The EPR powder spectrum confirms the nature of the ground state.Well-formed single crystals of the tetrahydrate, [Cu2(bipy)2(OH)2](C4O4)·4H2O, were grown from aqueous solutions and characterized by X-ray diffraction. The system is triclinic, space group P , with a = 9.022(2), b = 9.040(2), c = 8.409(2) Å, α = 103.51(2), β = 103.42(3), γ = 103.37(2)°, V = 642.9(3) Å3, Z = 1, Dx = 1.699 g cm−3, μ(Mo Kα) = 17.208 cm−1, F(000) = 336 and T= 295 K. A total of 2251 data were collected over the range 1θ25°; of these, 1993 (independent and with I3σ(I)) were used in the structural analysis. The final R and Rw residuals were 0.034 and 0.038 respectively. The structure contains squarato-O1, O3-bridged bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] units forming zigzag one-dimensional chains. Each copper atom is in a square-pyramidal environment with the two nitrogen atoms of 2,2′-bipyridyl and the two oxygen atoms of the hydroxo groups building the basal plane and another oxygen atom of the squarate lying in the apical position.The magnetic properties are discussed in the light of spectral and structural data and compared with the reported ones for other bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] complexes.  相似文献   

13.
Transition metal-mediated oxidation of hydroquinones is an important physiologic reaction, and copper(II) effectively catalyzes the reaction in phosphate-buffered saline (PBS). Studies reported herein in phosphate buffer alone demonstrate that copper(II) is an ineffective catalyst in the absence of coordinating ligands, but that 1,10-phenanthroline and histamine facilitate the copper(II)-mediated oxidation of hydroquinone and its 2,5- and 2,6-di-tert-butyl analogs to the corresponding benzoquinones. The high concentration of chloride in PBS is the key element that allows copper(II) to work in this system. Although the bis-bathocuproine disulfonate complex of Cu(II), (BC)2Cu(II), is a strong stoichiometric oxidant, stoichiometric amounts of copper(II) in the presence of ligands other than BC oxidize hydroquinones very slowly under anaerobic conditions. Thus, the rapid copper(II)-catalyzed reaction operating aerobically does not involve a simple ping-pong reduction of copper(II) to copper(I) by hydroquinone and reoxidation of copper(I) by O2.  相似文献   

14.
2D vanadium carbide MXene containing surface functional groups (denoted as V2CTx , where Tx are surface functional groups) is synthesized and studied as anode material for Na‐ion batteries. V2CTx anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. The charge storage mechanism of V2CTx material during Na+ intercalation/deintercalation and the redox reaction of vanadium are studied using a combination of synchrotron based X‐ray diffraction, hard X‐ray absorption near edge spectroscopy (XANES), and soft X‐ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution of redox reaction of vanadium to the charge storage and the reversible capacity of V2CTx during sodiation/desodiation process are provided through V K ‐edge XANES and V L 2,3‐edge sXAS results. A correlation between the CO32? content and the Na+ intercalation/deintercalation states in the V2CTx electrode observed from C and O K ‐edge in sXAS results implies that some additional charge storage reactions may take place between the Na+‐intercalated V2CTx and the carbonate‐based nonaqueous electrolyte. The results of this study provide valuable information for the further studies on V2CTx as anode material for Na‐ion batteries and capacitors.  相似文献   

15.
Cu2+ ion determinations were carried out in complex and in inorganic salts-glycerol media, to which increasing amounts of Cu(II) had been added, with the ion-specific Cu(II)-Selectrode. Likewise, complexing capacity of bacterial suspensions was estimated by titration with CuSO4.Copper-sensitive bacteria, e.g.,Klebsiella aerogenes, were inhibited in their growth and survival in the range of 10–8–10–6 M Cu2+ ion concentrations. In copper-buffered complex media, high copper loads could be tolerated, as growth proceeded with most of the copper bound to medium components. In low-complexing mineral salts media, in which high Cu2+ ion concentrations exist at low copper loads, there was competition of Cu2+ for binding sites of the cells. Total allowed copper was then determined by the ratio of copper to biomass.Copper-resistant bacteria could be isolated from a stock solution of CuSO4, containing 100 ppm Cu(II). They were of thePseudomonas type and showed a much higher tolerance towards Cu2+, up to 10–3 M.  相似文献   

16.
In order to clarify the binding states of copper in microbial cells, copper biosorption from aqueous systems using the chemically treated Micrococcus luteus IAM 1056 cells (hot water-treated, diluted NaOH-treated, chloroform–methanol-treated, and chloroform–methanol/concentrated KOH-treated cells) was examined. The intact cells of M. luteus adsorbed 527 mol of copper per g cells, and its copper adsorption was very rapid and was affected by the solution pH. The chloroform–methanol/concentrated KOH-treated cells showed higher copper biosorption capacity than the intact and the other chemically treated cells. The electron paramagnetic resonance (EPR) parameters, g and |A |, of Cu(II) ion in microbial cells indicate that Cu(II) ion in the intact and all the chemically treated cells have coordination environments with nitrogen and oxygen as donor atoms, being similar to those of type II proteins. The parameter g also indicated that the coupling between Cu(II) ion and the cell materials in the CHCl3–MeOH/concentrated KOH-treated cells is rather more stable than those between Cu(II) ion and the cell materials in the other treated cells.  相似文献   

17.
N-(2-Pyridyl)acetamide (aapH) complexes of palladium(II), cobalt(II), nickel(II), and copper(II) have been studied by means of magnetic susceptibilities, and infrared, electronic, and PMR spectra. In the octahedral complexes M(aapH)2X2(M = Co, Ni, Cu; X = Cl, Br, NCS, NO3), bidentate aapH is chelated through the pyridine-N and amid-O atomes, whereas in the square-planar Pd(aapH)2X2 (X = Cl, Br) unidentate aapH is coordinated through the pyridine-N atom alone. Under alkaline conditions aapH is deprotonated in the presence of palladium(II) to form Pd(aap)2·4H2O, aap being an anionic bidentate ligand and chelating through the pyridine-N and amide-O atoms.  相似文献   

18.
The oxovanadium(IV), acetatomanganese(III), chloroiron(III), nickel(II), copper(II), zinc(II) and palladium(II) of 3,3′-(1,2-phenylenediimino)diacrolein were prepared and investigated by means of mass, electronic, vibrational, NMR and ESR spectroscopy as well as magnetic susceptibility measurements. The acetatomanganese(III) and chloroiron(III) complexes were confirmed to be of high spin type. The absorption bands appearing in the energy range greater than 23 000 cm−1 were attributed to π→π* transitions within a ligand molecule and charge- transfer transitions from metal to ligand. The metal complexes assume the square-planar configuration type since the ligand-field bands were detected in the 12 700–18 500 cm−1 region. Strong bands appearing at 1601 and 1627 cm−1 were assigned to the CC and CO stretching vibrational modes, respectively, and were shifted to lower frequency upon metal-coordination. A VO stretching band was observed at 982 cm−1 for the oxovanadium(IV) complex and a CO stretching band was observed at 1547 cm−1 for the acetatomanganese(III) complex. Upon complex formation the amine proton signal is found to vanish and the aldehydic methine proton signal in the lowest field is shifted upfield for the nickel(II), zinc(II) and palladium(II) complexes. 13C NMR spectra support the coordination structure of the complexes which is revealed by 1H NMR spectra. As judged by the spin Hamiltonian parameters, the oxovanadium(IV) complex is of a square- planar type with an unpaired electron in the dxy orbital and the copper(II) complex assumes a distorted square-planar coordination due to the presence of five- and six-membered chelate rings with an unpaired electron in the dx2−y2 orbital.  相似文献   

19.
In the present focused review, vanadate-dependent haloperoxidases and vanadate-inhibited enzymes which catalyze the hydrolysis of phosphoester bonds are addressed. In these systems, vanadate [HxVO4](3−x)− is covalently coordinated to the imidazolyl moiety of an active site histidine, with a geometrical arrangement close to a trigonal bipyramid. The resulting ligand set, NO4, and ligand arrangement provide peroxidase activity to the haloperoxidases and, to a certain extent, also to vanadate-inhibited phosphatases. The haloperoxidases are responsible for the oxidative halogenation of a variety of organic substrates. They are also active in other oxidation reactions relying on peroxide as the oxidant, such as the oxidative cyclizations of terpenes and, specifically, the oxygenation of (prochiral) sulfides to (chiral) sulfoxides. These functions can be modeled by vanadium complexes. Attracted interest is paid to {V(NO4)} complexes that are functional and structural models of the peroxidases. In the vanadate-inhibited phosphatases – structural analogs of the transition state in phosphoester hydrolysis by the native enzymes – the position of the axial histidine can also be taken by cysteinate or serinate, a fact which has implications for the insulin-mimetic potential of vanadate.  相似文献   

20.
A simple method for the synthesis of 1-amino-3-aza-4-methylhept-4-ene-6-one is presented. The dominant tautomeric form of the compound in CDCl3 has been established. Using this compound eight (five new) unsymmetrical tetradentate Schiff bases and their nickel(II), palladium(II) and copper(II) complexes have been prepared and characterized by various physical techniques. Data for the complexes indicate that they are all of square-planar geometry. High resolution 1H nmr studies, including lanthanide shift reagents on nickel and palladium chelates, allowed us to assign almost all proton resonances. Data for nickel(II) and palladium(II) chelates with 1-(2′-hydroxyphenyl)-1-phenyl-2,5-diaza-6-methylnona-1,6-diene-8-one are consistent with the ketoenamine structure of both the acetylacetone and hydroxybenzophenone portions of the molecules. Good resolved nitrogen hyperfine splitting was observed in the esr spectrum of the copper complex with the aforementioned ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号