首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Dynamic Spatial Reconstructor (DSR) was used to study in vivo lung geometry and function. By replacing the lungs of three dogs with potato flakes and ping-pong balls of known air content and scanning these realistic phantoms in the DSR we have estimated accuracy of lung density to be within 7% and have demonstrated a high (+/- 3%) internal consistency (relative density within dogs). Change in total lung air content (y) as calculated from DSR volume imaging of anesthetized dogs matched the known inflation steps (x) to within 7% [range was 1-7% with a mean of 3 +/- 0.5% (SE)]. A gradient of decreasing percent lung air content was measured in the ventral-dorsal direction at functional residual capacity (FRC) in the supine body posture (y = 3.29% air content/cm lung height + 46.48% air content; r = 0.90). Regional lung air content change with lung inflation was greatest in the dependent lung regions. In contrast, regional lung air content at FRC was approximately uniform along the ventral-dorsal direction with the dog in the prone posture and was 66 +/- 0.6% (SE). Ventral-dorsal gradients in lung air content measured within an isogravimetric plane of the dogs in the left or right lateral body posture suggest that regional differences in lung air content cannot be explained solely on the basis of a direct gravitational effect on the lung. Evidence is presented to suggest a possible major role of the intrathoracic position of the mediastinal contents in determining these lung air content distributions.  相似文献   

2.
ECG-triggered computed tomography (CT) was used during passage of iodinated contrast to determine regional pulmonary blood flow (PBF) in anesthetized prone/supine dogs. PBF was evaluated as a function of height within the lung (supine and prone) as a function of various normalization methods: raw unit volume data (PBFraw) or PBF normalized to regional fraction air (PBFair), fractional non-air (PBFgm), or relative number of alveoli (PBFalv). The coefficient of variation of PBFraw, PBFair, PBFalv, and PBFgm ranged between 30 and 50% in both lungs and both body postures. The position of maximal flow along the height of the lung (MFP) was calculated for PBFraw, PBFair, PBFalv, and PBFgm. Only PBFgm showed a significantly different MFP height supine vs. prone (whole lung: 2.60 +/- 1.08 cm supine vs. 5.08 +/- 1.61 cm prone, P < 0.01). Mean slopes (ml/min/gm water content/cm) of PBFgm were steeper supine vs. prone in the right (RL) but not left lung (LL) (RL: -0.65 +/- 0.29 supine vs. -0.26 +/- 0.25 prone, P < 0.02; LL: -0.47 +/- 0.21 supine vs. -0.32 +/- 0.26 prone, P > 0.10). Mean slopes of PBFgm vs. vertical lung height were not different prone vs. supine above this vertical height of MFP (VMFP), but PBFgm slopes were steeper in the supine position below the VMFP in the RL. We conclude that PBFgm distribution was posture dependent in RL but not LL. Support of the heart may play a role. We demonstrate that normalization factors can lead to differing attributions of gravitational effects on PBF heterogeneity.  相似文献   

3.
We evaluated the effect of prone positioning on gas-transfer characteristics in normal human subjects. Single-breath (SB) and rebreathing (RB) maneuvers were employed to assess carbon monoxide diffusing capacity (DlCO), its components related to capillary blood volume (Vc) and membrane diffusing capacity (Dm), pulmonary tissue volume (Vti), and cardiac output (Qc). Alveolar volume (Va) was significantly greater prone than supine, irrespective of the test maneuver used. Nevertheless, Dl(CO) was consistently lower prone than supine, a difference that was enhanced when appropriately corrected for the higher Va prone. When adequately corrected for Va, diffusing capacity significantly decreased by 8% from supine to prone [SB: Dl(CO,corr) supine vs. prone: 32.6 +/- 2.3 (SE) vs. 30.0 +/- 2 ml x min(-1) x mmHg(-1) stpd; RB: Dl(CO,corr) supine vs. prone: 30.2 +/- 2.2 (SE) vs. 27.8 +/- 2.0 ml x min(-1) x mmHg(-1) stpd]. Both Vc and Dm showed a tendency to decrease from supine to prone, but neither reached significance. Finally, there were no significant differences in Vti or Qc between supine and prone. We interpret the lower diffusing capacity of the healthy lung in the prone posture based on the relatively larger space occupied by the heart in the dependent lung zones, leaving less space for zone 3 capillaries, and on the relatively lower position of the heart, leaving the zone 3 capillaries less engorged.  相似文献   

4.
Prone posture increases cardiac output and improves pulmonary gas exchange. We hypothesized that, in the supine posture, greater compression of dependent lung limits regional blood flow. To test this, MRI-based measures of regional lung density, MRI arterial spin labeling quantification of pulmonary perfusion, and density-normalized perfusion were made in six healthy subjects. Measurements were made in both the prone and supine posture at functional residual capacity. Data were acquired in three nonoverlapping 15-mm sagittal slices covering most of the right lung: central, middle, and lateral, which were further divided into vertical zones: anterior, intermediate, and posterior. The density of the entire lung was not different between prone and supine, but the increase in lung density in the anterior lung with prone posture was less than the decrease in the posterior lung (change: +0.07 g/cm(3) anterior, -0.11 posterior; P < 0.0001), indicating greater compression of dependent lung in supine posture, principally in the central lung slice (P < 0.0001). Overall, density-normalized perfusion was significantly greater in prone posture (7.9 +/- 3.6 ml.min(-1).g(-1) prone, 5.1 +/- 1.8 supine, a 55% increase; P < 0.05) and showed the largest increase in the posterior lung as it became nondependent (change: +71% posterior, +58% intermediate, +31% anterior; P = 0.08), most marked in the central lung slice (P < 0.05). These data indicate that central posterior portions of the lung are more compressed in the supine posture, likely by the heart and adjacent structures, than are central anterior portions in the prone and that this limits regional perfusion in the supine posture.  相似文献   

5.
The purpose of the present study was to assess the mechanical role of the expiratory muscles during spontaneous breathing in prone animals. The electromyographic (EMG) activity of the triangularis sterni, the rectus abdominis, the external oblique, and the transversus abdominis was studied in 10 dogs light anesthetized with pentobarbital sodium. EMGs were recorded during spontaneous steady-state breathing in supine and prone suspended animals both before and after cervical vagotomy. We also measured the end-expiratory lung volume [functional residual capacity (FRC)] in supine and prone positions to assess the mechanical role of expiratory muscle activation in prone dogs. Spontaneous breathing in the prone posture elicited a significant recruitment of the triangularis sterni, the external oblique, and the transversus abdominis (P less than 0.05). Bilateral cervical vagotomy eliminated the postural activation of the external oblique and the transversus abdominis but not the triangularis sterni. Changes in posture during control and after cervical vagotomy were associated with an increase in FRC. However, changes in FRC, on average, were 132.3 +/- 33.8 (SE) ml larger (P less than 0.01) postvagotomy. We conclude that spontaneous breathing in prone anesthetized dogs is associated with a marked phasic expiratory recruitment of rib cage and abdominal muscles. The present data also indicate that by relaxing at end expiration the expiratory muscles of the abdominal region are directly responsible for generating roughly 40% of the tidal volume.  相似文献   

6.
A change from the supine to the head-up posture in anesthetized dogs elicits increased phasic expiratory activation of the rib cage and abdominal expiratory muscles. However, when this postural change is produced over a 4- to 5-s period, there is an initial apnea during which all the muscles are silent. In the present studies, we have taken advantage of this initial silence to determine functional residual capacity (FRC) and measure the subsequent change in end-expiratory lung volume. Eight animals were studied, and in all of them end-expiratory lung volume in the head-up posture decreased relative to FRC [329 +/- 70 (SE) ml]. Because this decrease also represents the increase in lung volume as a result of expiratory muscle relaxation at the end of the expiratory pause, it can be used to determine the expiratory muscle contribution to tidal volume (VT). The average contribution was 62 +/- 6% VT. After denervation of the rib cage expiratory muscles, the reduction in end-expiratory lung volume still amounted to 273 +/- 84 ml (49 +/- 10% VT). Thus, in head-up dogs, about two-thirds of VT result from the action of the expiratory muscles, and most of it (83%) is due to the action of the abdominal rather than the rib cage expiratory muscles.  相似文献   

7.
Gravity is a minor determinant of pulmonary blood flow distribution   总被引:9,自引:0,他引:9  
Regional pulmonary blood flow in dogs under zone 3 conditions was measured in supine and prone postures to evaluate the linear gravitational model of perfusion distribution. Flow to regions of lung that were 1.9 cm3 in volume was determined by injection of radiolabeled microspheres in both postures. There was marked perfusion heterogeneity within isogravitational planes (coefficient of variation = 42.5%) as well as within gravitational planes (coefficient of variation = 44.2 and 39.2% in supine and prone postures, respectively; P = 0.02). On average, vertical height explained only 5.8 and 2.4% of the flow variability in the supine and prone postures, respectively. Whereas the gravitational model predicts that regional flows should be negatively correlated when measured in supine and prone postures, flows in the two postures were positively correlated, with an r2 of 0.708 +/- 0.050. Regional perfusion as a function of distance from the center of a lung explained 13.4 and 10.8% of the flow variability in the supine and prone postures, respectively. A linear combination of vertical height and radial distance from the centers of each lung provided a better-fitting model but still explained only 20.0 and 12.0% of the flow variability in the supine and prone postures, respectively. The entire lung was searched for a region of contiguous lung pieces (22.8 cm3) with high flow. Such a region was found in the dorsal area of the lower lobes in six of seven animals, and flow to this region was independent of posture. Under zone 3 conditions, neither gravity nor radial location is the principal determinant of regional perfusion distribution in supine and prone dogs.  相似文献   

8.
To determine the cause of the difference in gas exchange between the prone and supine postures in dogs, gas exchange was assessed by the multiple inert gas elimination technique (MIGET) and distribution of pulmonary blood flow was determined using radioactively labeled microspheres in seven anesthetized paralyzed dogs. Each animal was studied in the prone and supine positions in random order while tidal volume and respiratory frequency were kept constant with mechanical ventilation. Mean arterial PO2 was significantly lower (P less than 0.01) in the supine [96 +/- 10 (SD) Torr] than in the prone (107 +/- 6 Torr) position, whereas arterial PCO2 was constant (38 Torr). The distribution of blood flow (Q) vs. ventilation-to-perfusion ratio obtained from MIGET was significantly wider (P less than 0.01) in the supine [ln SD(Q) = 0.75 +/- 0.26] than in the prone position [ln SD (Q) = 0.34 +/- 0.05]. Right-to-left pulmonary shunting was not significantly altered. The distribution of microspheres was more heterogeneous in the supine than in the prone position. The larger heterogeneity was due in part to dorsal-to-ventral gradients in Q in the supine position that were not present in the prone position (P less than 0.01). The decreased efficiency of oxygenation in the supine posture is caused by an increased ventilation-to-perfusion mismatch that accompanies an increase in the heterogeneity of Q distribution.  相似文献   

9.
To determine regional pulmonary microvascular mean transit times (MTTs), we used electrocardiogram-gated X-ray computed tomographic imaging to follow bolus radiopaque contrast material through the lungs in anesthetized animals (7 dogs and 1 pig, prone and supine). By deconvolution/reconvolution of regional time-attenuation curves obtained from parenchyma and large lobar arteries, we estimated the microvascular residue function and reconstituted the regional microvascular time-attenuation curves and, thus, regional microvascular MTTs. The mean microvascular MTTs in the supine and prone postures were 3.94 +/- 1.0 and 3.40 +/- 0.84 (mean +/- SD), respectively. The dependent-nondependent vertical gradient of MTT was greater in the supine [slope = 0.25 +/- 0.10 (SD), P < 0.001 by t-test] than in the prone (-0.03 +/- 0.06 in 6 of 8 animals; 2 outliers had positive slopes) posture. In both postures, there was a trend toward faster transit times in the dorsal-basal lung region in six of the eight animals, suggesting gravity-independent higher vascular conductance dorsocaudally. We conclude that deconvolution methods, in association with electrocardiogram-gated high-speed X-ray computed tomography, can provide insights into regional heterogeneity of pulmonary microvascular MTT in vivo.  相似文献   

10.
Xe-enhanced computed tomography (CT; Xe-CT) is a method for the noninvasive measurement of regional pulmonary ventilation in intact subjects, determined from the washin and washout rates of the radiodense, nonradioactive gas Xe, as measured in serial CT scans. We used the Xe-CT ventilation method, along with other quantitative CT measurements, to investigate the distribution of regional lung ventilation and air content in healthy, anesthetized, mechanically ventilated dogs in the prone and supine postures. Vertical gradients in regional ventilation and air content were measured in five mongrel dogs in both prone and supine postures at four axial lung locations. In the supine position, ventilation increased with dependent location, with a mean slope of 7.3%/cm lung height, whereas no ventilation gradients were found at any location in the prone position. These results agree quantitatively with other published studies. In addition, six different animals were studied (3 supine, 3 prone) to examine the longitudinal distribution of ventilation and air content. The prone lungs were more uniformly inflated compared with the supine, which were less well expanded at the base than apex. Ventilation index, a measure of regional ventilation relative to whole lung ventilation, increased steeply from apex to base in the supine animals, whereas it was again more uniform in the prone condition. We conclude that the Xe-CT method provides a reasonable, quantitative measurement of regional ventilation and promises to be a valuable tool for the noninvasive determination of regional lung function.  相似文献   

11.
Role of tracheal and bronchial circulation in respiratory heat exchange   总被引:3,自引:0,他引:3  
Due to their anatomic configuration, the vessels supplying the central airways may be ideally suited for regulation of respiratory heat loss. We have measured blood flow to the trachea, bronchi, and lung parenchyma in 10 anesthetized supine open-chest dogs. They were hyperventilated (frequency, 40; tidal volume 30-35 ml/kg) for 30 min or 1) warm humidified air, 2) cold (-20 degrees C dry air, and 3) warm humidified air. End-tidal CO2 was kept constant by adding CO2 to the inspired ventilator line. Five minutes before the end of each period of hyperventilation, measurements of vascular pressures (pulmonary arterial, left atrial, and systemic), cardiac output (CO), arterial blood gases, and inspired, expired, and tracheal gas temperatures were made. Then, using a modification of the reference flow technique, 113Sn-, 153Gd-, and 103Ru-labeled microspheres were injected into the left atrium to make separate measurements of airway blood flow at each intervention. After the last measurements had been made, the dogs were killed and the lungs, including the trachea, were excised. Blood flow to the trachea, bronchi, and lung parenchyma was calculated. Results showed that there was no change in parenchymal blood flow, but there was an increase in tracheal and bronchial blood flow in all dogs (P less than 0.01) from 4.48 +/- 0.69 ml/min (0.22 +/- 0.01% CO) during warm air hyperventilation to 7.06 +/- 0.97 ml/min (0.37 +/- 0.05% CO) during cold air hyperventilation.  相似文献   

12.
Active and passive shortening of muscle bundles in the canine diaphragm were measured with the objective of testing a consequence of the minimal-work hypothesis: namely, that the ratio of active to passive shortening is the same for all active muscles. Lengths of six muscle bundles in the costal diaphragm and two muscle bundles in the crural diaphragm of each of four bred-for-research beagle dogs were measured by the radiopaque marker technique during the following maneuvers: a passive deflation maneuver from total lung capacity to functional residual capacity, quiet breathing, and forceful inspiratory efforts against an occluded airway at different lung volumes. Shortening per liter increase in lung volume was, on average, 70% greater during quiet breathing than during passive inflation in the prone posture and 40% greater in the supine posture. For the prone posture, the ratio of active to passive shortening was larger in the ventral and midcostal diaphragm than at the dorsal end of the costal diaphragm. For both postures, active shortening during quiet breathing was poorly correlated with passive shortening. However, shortening during forceful inspiratory efforts was highly correlated with passive shortening. The average ratios of active to passive shortening were 1.23 +/- 0.02 and 1.32 +/- 0.03 for the prone and supine postures, respectively. These data, taken together with the data reported in the companion paper (T. A. Wilson, M. Angelillo, A. Legrand, and A. De Troyer, J. Appl. Physiol. 87: 554-560, 1999), support the hypothesis that, during forceful inspiratory efforts, the inspiratory muscles drive the chest wall along the minimal-work trajectory.  相似文献   

13.
We studied the effects on aerosol bolus inhalations of small changes in convective inhomogeneity induced by posture change from upright to supine in nine normal subjects. Vital capacity single-breath nitrogen washout tests were used to determine ventilatory inhomogeneity change between postures. Relative to upright, supine phase III slope was increased 33 +/- 11% (mean +/- SE, P < 0.05) and phase IV height increased 25 +/- 11% (P < 0.05), consistent with an increase in convective inhomogeneity likely due to increases in flow sequencing. Subjects also performed 0.5-microm-particle bolus inhalations to penetration volumes (V(p)) between 150 and 1,200 ml during a standardized inhalation from residual volume to 1 liter above upright functional residual capacity. Mode shift (MS) in supine posture was more mouthward than upright at all V(p), changing by 11.6 ml at V(p) = 150 ml (P < 0.05) and 38.4 ml at V(p) = 1,200 ml (P < 0.05). MS and phase III slope changes correlated positively at deeper V(p). Deposition did not change at any V(p), suggesting that deposition did not cause the MS change. We propose that the MS change results from increased sequencing in supine vs. upright posture.  相似文献   

14.
A recently developed method for quantitative assessment of regional lung ventilation was employed for the study of posture-dependent ventilation differences in rats. The measurement employed hyperpolarized (3)He MRI to detect the build-up of the signal intensity after increasing numbers of (3)He breaths, which allowed for computation of a regional ventilation parameter. A group of six anesthetized rats was studied in both supine and prone postures. Three-dimensional maps of the ventilation parameter were obtained with high spatial resolution (voxel volume approximately 2 mm(3)). Vertical (dorsal-ventral) gradients of the ventilation index, defined as the regional ventilation normalized by the average ventilation within the whole lung, were investigated. Variations in the regional distribution of the ventilation parameter, as well as of the ventilation index, could be detected, depending on the posture of the rats. In supine posture, ventilation was elevated in the dependent parts of the lungs, with a linear gradient of the ventilation index of -0.11 +/- 0.03 cm(-1). In prone posture, the distribution of ventilation was more uniform, with a significantly (P < 0.001) smaller gradient of the ventilation index of -0.01 +/- 0.02 cm(-1). It is concluded that the (3)He MRI-based method can detect and quantify regional ventilation gradients in animals as small as the rat and that these gradients depend on prone or supine posture of the animal.  相似文献   

15.
Regional lung strain in dogs during deflation from total lung capacity   总被引:1,自引:0,他引:1  
Regional lung distortion during deflation from total lung capacity to functional residual capacity (FRC) in intact supine and prone anesthetized dogs was determined from the displacement of multiple metallic markers embedded in the lung parenchyma. Distortion was expressed as strain (epsilon), which is related to fractional length changes. In the supine position, transverse strain (epsilon yy) was larger than vertical strain (epsilon xx) and cephalocaudal strain (epsilon zz) in the upper lobe. The FRC of the lower lobe was smaller than FRC of the upper lobe and all strains were larger, but epsilon zz increased most and became equal to epsilon yy. In the prone position, epsilon yy was largest in all upper lobes and in three of four lower lobes. Strains and volumes of the upper and lower lobes were similar. The upper and lower lobes rotated slightly around different axes, indicating that interpleural fissures allow additional degrees of freedom for the lungs to conform to the thoracic cavity. In the prone position, there were no consistent gradients of strain or volume. These results indicate that, in determining the regional distribution of FRC in the recumbent dog, in addition to the effect of gravity on the lung, there are important interactions between lung and thoracic cavity shapes.  相似文献   

16.
1. Tilting sloths anesthetized with chloralose from erect to supine or supine to erect produced little or no effect on heart rate. 2. Tilting anesthetized sloths from erect to supine increased both systolic and diastolic pressures significantly and by about the same amounts. The maximum effect was produced in 20 sec. 3. Pressures stabilized at a higher level than in the erect posture but below the maximum reached in tilting. 4. Tilting these sloths from the supine to the erect posture resulted in a rapid (20 sec) and dramatic fall in pressures to below the initial erect pressure levels. Return to initial erect levels took place slowly. 5. Tilting reserpinized sloths from erect to supine or supine to erect produced little or no effect on heart rate. 6. Tilting reserpinized sloths from erect to supine increased both systolic and diastolic pressures materially and by similar amounts. The maximum effect took 50 sec. 7. Pressures stabilized at higher levels than in the erect posture but less than maximum reached with tilting. 8. Tilting these sloths from supine to erect caused significant falls in pressure to slightly below the initial erect pressure, with maximum effect reached in 30 sec and eventual return to control level. 9. Pressure changes were almost entirely the result of altered venous return. 10. Neither chloralose nor reserpine completely blocked vascular control but reduced it materially.  相似文献   

17.
In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation [inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1] were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but the alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.  相似文献   

18.
Reduced functional residual capacity (FRC) is consistently found in obese subjects. In 10 obese subjects (mean +/- SE age 49.0 +/- 6 yr, weight 128.4 +/- 8 kg, body mass index 44 +/- 3 kg/m2) without respiratory disease, we examined 1) supine changes in total lung capacity (TLC) and subdivisions, 2) whether values of total respiratory resistance (Rrs) are appropriate for mid-tidal lung volume (MTLV), and 3) estimated resistance of the nasopharyngeal airway (Rnp) in both sitting and supine postures. The results were compared with those of 13 control subjects with body mass indexes of <27 kg/m2. Rrs at 6 Hz was measured by applying forced oscillation at the mouth (Rrs,mo) or the nose (Rrs,na); Rnp was estimated from the difference between sequential measurements of Rrs,mo and Rrs,na. All measurements were made when subjects were seated and when supine. Obese subjects when seated had a restrictive defect with low TLC and FRC-to-TLC ratio; when supine, TLC fell 80 ml and FRC fell only 70 ml compared with a mean supine fall of FRC of 730 ml in control subjects. Values of Rrs,mo and Rrs,na at resting MTLV in obese subjects were about twice those in control subjects in both postures. Relating total respiratory conductance (1/Rrs) to MTLV, the increase in Rrs,mo in obese subjects was only partly explained by their reduced MTLV. Rnp was increased in some obese subjects in both postures. Despite the increased extrapulmonary mass load in obese subjects, further falls in TLC and FRC when supine were negligible. Rrs,mo at isovolume was increased. Further studies are needed to examine the causes of reduced TLC and increases in Rrs,mo and sometimes in Rnp in obese subjects.  相似文献   

19.
The electromyographic activity of the diaphragm (EMGdi) and scalene muscle (EMGsc) was studied in the supine and upright positions, respectively, during hyperoxic progressive hypercapnic rebreathing (HCVR) in five healthy males. End-expiratory esophageal pressure (EEPes) was quantified on a breath-to-breath basis as a reflection of altered end-expiratory lung volume. There was no significant difference in the slopes of EMGdi, expressed as a percentage of maximum at total lung capacity vs. minute volume of ventilation (VI), between the supine and upright positions [0.79 +/- 0.05 (SE) vs. 0.92 +/- 0.17, respectively]. In contrast, the slope of the regression line relating EMGsc to VI was steeper in the upright than in the supine position (0.69 +/- 0.05 vs. 0.35 +/- 0.04, respectively; P less than 0.005). Positive EEPes at comparable VI at the ends of HCVRs were of greater magnitude upright than supine (3.27 +/- 0.68 vs. 4.35 +/- 0.60 cmH2O, respectively, P less than 0.001). We conclude that altering posture has a greater effect on scalene and expiratory muscle activity than on diaphragmatic activity during hypercapnic stimulation.  相似文献   

20.
To investigate how fast and to what extent superior vena caval hypertension (SVCH) increases lung water in acute increased-permeability state, we studied the time course of lung water accumulation for 3 h in anesthetized dogs under different treatments: 1) controls without intervention (5 dogs), 2) SVCH alone (5 dogs), 3) mild lung microvascular injury induced by low-dose alloxan (75 mg/kg) alone (5 dogs), and 4) SVCH coupled with low-dose alloxan (5 dogs). Neither low-dose alloxan alone nor SVCH alone [superior vena caval pressure (Psvc) = 11.0 +/- 3.1 (SD) mmHg] increased lung water significantly. The SVCH coupled with low-dose alloxan (Psvc = 11.3 +/- 2.7 mmHg) doubled extravascular lung thermal volume measured by the thermal-dye dilution technique within 1 h (5.3 +/- 0.9 ml/kg at base line and 10.9 +/- 4.7 ml/kg at 1 h), then remained unchanged (12.5 +/- 5.7 ml/kg at 3 h). This increase in lung water was confirmed by gravimetric method (5.69 +/- 1.71 g/g blood-free dry wt). We conclude that SVCH is one of the factors that may promote lung water accumulation in increased-permeability state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号