首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
J E Estes  L C Gershman 《Biochemistry》1978,17(13):2495-2499
F-actin monomer (F-monomer) is formed upon the addition of neutral salt to G-actin. Since F-monomer has a digestibility similar to that of F-actin and much lower than that of G-actin, it has been proposed that F-monomer has a conformation different from that of G-actin and similar to the conformation of the subunits in F-actin. To examine whether F-monomer will enhance the magnesium-activated myosin adenosine triphosphatase (Mg2+-ATPase) as much as F-actin, the ability of partially polymerized actin populations at equilibrium to activate the Mg2+-ATPase of heavy meromyosin was investigated. Correlations were made between ATPase activities and the polymerization state of actin as determined by measurements of viscosity and digestibility. No significant activation of the heavy meromyosin ATPase was observed under conditions where G-actin or mixtures of G-actin and F-monomer were present. As polymer formation occurred at higher actin concentrations, or with increased KCl concentrations, substantial activation characteristic of F-actin was observed. The data suggest that F-monomer may undergo a further conformational change as it forms nuclei or joins onto polymers. Alternatively, the site of actin which activates the myosin ATPase may involve the crevice between two adjacent actin subunits.  相似文献   

2.
pH-induced changes in G-actin conformation and metal affinity   总被引:2,自引:0,他引:2  
C T Zimmerle  C Frieden 《Biochemistry》1988,27(20):7759-7765
Metal-induced conformational changes in actin at 20 degrees C have been investigated as a function of pH using actin labeled at Cys-374 with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine. At pH 8, the addition of a high Ca2+ concentration (2 mM) to G-actin gives an instantaneous fluorescence increase while the addition of a high Mg2+ concentration gives both an instantaneous and a slow fluorescence increase. The instantaneous increase is interpreted as divalent cation binding to low-affinity, relatively nonspecific sites, while the slow response is attributed to Mg2+ binding to specific sites of moderate affinity [Zimmerle, C.T., Patane, K., & Frieden, C. (1987) Biochemistry 26, 6545-6552]. The magnitudes of both the instantaneous and slow fluorescence increases associated with Mg2+ addition to G-actin are shown here to decrease as the pH is lowered while the fluorescence of labeled G-actin in the presence of low or moderate Ca2+ concentrations (less than 200 microM) increases. The pH-dependent data suggest that protonation of a single class of residues with an approximate pK of 6.8 alters the immediate environment of the label differently depending upon the cation bound at the moderate-affinity site. The pH-dependent changes in the magnitude of the slow fluorescence response upon Mg2+ addition to Ca2+-actin are not associated with changes in the Mg2+ affinity at the moderate-affinity site but result from protonation altering the fluorescence response to Mg2+ binding. Protonation of this same class of residues is proposed to induce an actin conformation similar to that induced by cation binding at the low-affinity sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The rate of actin polymerization gradually decreased without changing the final level of polymerization, when incubated in the presence of 0.2 mM ATP at pH 8.0 and 25 degrees C. This change was much faster in Mg2+-actin than Ca2+-actin, and Mg2+-actin became denatured and unpolymerizable on prolonged incubation. The drop in the polymerization rate was due both to weakened nucleation and a slowed elongation rate in the incubated actin. The change in the polymerization rate was partially reversible by storing the sample at 0 degrees C. When the rate of polymerization dropped markedly on prolonged incubation, a gel filtration profile showed that Ca2+-actin existed as monomer not as oligomer. On the other hand, Mg2+-actin formed dimers, and other oligomers, as revealed by crosslinking analysis. There were changes in fluorescence intensities due to tyrosine and/or tryptophan residues of the actin molecule, and in difference absorption spectra, suggesting that conformational changes intermediate between native and denatured states occurred during incubation.  相似文献   

4.
Recent publication of the atomic structure of G-actin (Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C., 1990, Nature 347, 37-44) raises questions about how the conformation of actin changes upon its polymerization. In this work, the effects of various quenchers of etheno-nucleotides bound to G- and F-actin were examined in order to assess polymerization-related changes in the nucleotide phosphate site. The Mg(2+)-induced polymerization of actin quenched the fluorescence of the etheno-nucleotides by approximately 20% simultaneously with the increase in light scattering by actin. A conformational change at the nucleotide binding site was also indicated by greater accessibility of F-actin than G-actin to positively, negatively, and neutrally charged collisional quenchers. The difference in accessibility between G- and F-actin was greatest for I-, indicating that the environment of the etheno group is more positively charged in the polymerized form of actin. Based on calculations of the change in electric potential of the environment of the etheno group, specific polymerization-related movements of charged residues in the atomic structure of G-actin are suggested. The binding of S-1 to epsilon-ATP-G-actin increased the accessibility of the etheno group to I- even over that in Mg(2+)-polymerized actin. The quenching of the etheno group by nitromethane was, however, unaffected by the binding of S-1 to actin. Thus, the binding of S-1 induces conformational changes in the cleft region of actin that are different from those caused by Mg2+ polymerization of actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Intramonomer fluorescence energy transfer between the donor epsilon-ATP bound to the nucleotide-binding site and the acceptor 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole bound to Cys-373 in G-actin was measured by steady-state fluorimetry. Assuming for the orientation factor its dynamic limit K2 = 2/3, the donor and acceptor distance in a G-actin molecule was calculated to be about 3 nm. The intermonomer energy transfer in F-actin occurring between the donor bound to an actin monomer and the acceptor bound to the nearest-neighbour actin monomer was also measured and the distance was calculated to be about 4 nm. The kinetics of the actin polymerization process was studied by following the decrease in fluorescence intensity upon addition of salts to G-actin solution. The initial velocity of the fluorescence intensity change was proportional to the square of the initial G-actin concentration. The temperature dependence of the velocity was proportional to the square of the initial G-actin concentration. The temperature dependence of the velocity was proportional to exp(-10/RT). These results indicated that the initial fluorescence intensity change corresponds to monomer-dimer transformation and its activation enthalpy was 10 kcal/mol.  相似文献   

6.
C T Zimmerle  C Frieden 《Biochemistry》1986,25(21):6432-6438
The rate of the Mg2+-induced polymerization of rabbit skeletal muscle G-actin has been measured as as function of temperature at pH 8 by using various concentrations of Mg2+, Ca2+, and G-actin. A polymerization mechanism similar to that proposed at this pH [Frieden, C. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6513-6517] was found to fit the data from 10 to 35 degrees C. From the kinetic data, no evidence for actin filament fragmentation was found at any temperature. Dimer formation is the most temperature-sensitive step, with the ratio of forward and reverse rate constants changing 4 orders of magnitude from 10 to 35 degrees C. Over this temperature change, all other ratios of forward and reverse rate constants change 7-fold or less, and the critical concentration remains nearly constant. The reversible Mg2+-induced isomerization of G-actin monomer occurs to a greater extent with increasing temperature, measured either by using N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled actin or by simulation of the full-time course of the polymerization reaction. This is partially due to Mg2+ binding becoming tighter, and Ca2+ binding becoming weaker, with increasing temperature. Elongation rates from the filament-pointed end, determined by using actin nucleated by plasma gelsolin, show a temperature dependence slightly larger than that expected for a diffusion-limited reaction.  相似文献   

7.
Actin contains a single high-affinity cation-binding site, for which Ca2+ and Mg2+ can compete, and multiple low-affinity cation-binding sites, which can bind Ca2+, Mg2+, or K+. Binding of cations to the low-affinity sites causes polymerization of monomeric actin with either Ca2+ or Mg2+ at the high-affinity site. A rapid conformational change occurs upon binding of cations to the low-affinity sites (G----G) which is apparently associated with the initiation of polymerization. A much slower conformational change (G----G', or G----G' if the low-affinity sites are also occupied) follows the replacement of Ca2+ by Mg2+ at the high-affinity site. This slow conformational change is reflected in a 13% increase in the fluorescence of G-actin labeled with the fluorophore 7-chloro-4-nitrobenzene-2-oxadiazole (NBD-labeled actin). The rate of the ATP hydrolysis that accompanies elongation is slower with Ca-G-actin than with Mg-G'-actin (i.e. with Ca2+ rather than Mg2+ at the high-affinity site) although their rates of elongation are similar. The slow ATP hydrolysis on Ca-F-actin causes a lag in the increase in fluorescence associated with the elongation of actin labeled with the fluorophore N-pyrene iodoacetamide (pyrenyl-labeled actin), even though there is no lag in the elongation rate, because pyrenyl-labeled ATP-F-actin subunits have a lower fluorescence intensity than pyrenyl-labeled ADP-F-actin subunits. The effects of the cation bound to the high-affinity binding site must, therefore, be considered in quantitatively analyzing the kinetics of polymerization of NBD-labeled actin and pyrenyl-labeled actin. Although their elongation rates are not very different, the rate of nucleation is much slower for Ca-G-actin than for Mg-G'-actin, probably because of the slower rate of ATP hydrolysis when Ca2+ is bound to the high-affinity site.  相似文献   

8.
It was shown that substoichiometric concentrations of chaetoglobosin J, one of the fungal metabolites belonging to cytochalasins, inhibited the elongation at the barbed end of an actin filament. Stoichiometric concentrations of chaetoglobosin J decreased both the rate and the extent of actin polymerization in the presence of 75 mM KCl, 0.2 mM ATP and 10 mM Tris-HCl buffer at pH 8.0 and 25 degrees C. In contrast, stoichiometric concentrations of cytochalasin D accelerated actin polymerization. Chaetoglobosin J slowly depolymerized F-actin to G-actin until an equilibrium was reached. Analyses by a number of different methods showed the increase of monomer concentration at equilibrium to depend on chaetoglobosin J concentrations. F-actin under the influence of stoichiometric concentrations of chaetoglobosin J only slightly activated the Mg2+-enhanced ATPase activity of myosin at low ionic strength. It is suggested that when the structure of the chaetoglobosin-affected actin filaments is modified, the equilibrium is shifted to the monomer side, and the interaction with myosin is weakened.  相似文献   

9.
E Kim  M Motoki  K Seguro  A Muhlrad    E Reisler 《Biophysical journal》1995,69(5):2024-2032
Gln-41 on G-actin was specifically labeled with a fluorescent probe, dansyl ethylenediamine (DED), via transglutaminase reaction to explore the conformational changes in subdomain 2 of actin. Replacement of Ca2+ with Mg2+ and ATP with ADP on G-actin produced large changes in the emission properties of DED. These substitutions resulted in blue shifts in the wavelength of maximum emission and increases in DED fluorescence. Excitation of labeled actin at 295 nm revealed energy transfer from tryptophans to DED. Structure considerations and Cu2+ quenching experiments suggested that Trp-79 and/or Trp-86 serves as energy donors to DED. Energy transfer from these residues to DED on Gln-41 increased with the replacement of Ca2+ with Mg2+ and ATP with ADP. Polymerization of Mg-G-actin with MgCl2 resulted in much smaller changes in DED fluorescence than divalent cation substitution. This suggests that the conformation of loop 38-52 on actin is primed for the polymerization reaction by the substitution of Ca2+ with Mg2+ on G-actin.  相似文献   

10.
Divalent cation binding to the high- and low-affinity sites on G-actin   总被引:4,自引:0,他引:4  
C T Zimmerle  K Patane  C Frieden 《Biochemistry》1987,26(20):6545-6552
Metal binding to skeletal muscle G-actin has been assessed by equilibrium dialysis using 45Ca2+ and by kinetic measurements of the increase in the fluorescence of N-acetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine-labeled actin. Two classes of cation binding sites were found on G-actin which could be separated on the basis of their Ca2+ affinity: a single high-affinity site with a Kd considerably less than 1 microM and three identical moderate-affinity binding sites with a Kd of 18 microM. The data for the Mg2+-induced fluorescence enhancement of actin labeled with N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine support a previously suggested mechanism [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886] in which Ca2+ is replaced by Mg2+ at the moderate affinity site(s), followed by a slow actin isomerization. This isomerization occurs independently of Ca2+ release from the high-affinity site. The fluorescence data do not support a mechanism in which this isomerization is directly related to Ca2+ release from the high-affinity site. Fluorescence changes of labeled actin associated with adding metal chelators are complex and do not reflect the same change induced by Mg2+ addition. Fluorescence changes in the labeled actin have also been observed for the addition of Cd2+ or Mn2+ instead of Mg2+. It is proposed actin may undergo a host of subtle conformational changes dependent on the divalent cation bound. We have also developed a method by which progress curves of a given reaction can be analyzed by nonlinear regression fitting of kinetic simulations to experimental reaction time courses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We varied the molar ratio of added lanthanide ion to skeletal muscle actin (M3+/A) and observed their effects on the change in reduced viscosity (Nred) in the presence of polymerizing quantities of salt (0.1 M KC1). Once the concentration of the lanthanide ion exceeds the concentration of the nucleotide present (0.2 mM ATP), we noted that with M3+/A ratios up to 4: (a) there was a sharp peak in the observed Nred above the level achieved by control F-actin; (b) the magnitude of (a) was shown to be a function of the initial G-actin concentration. With an M3+/A ratio of greater than 4 we observed: (i) a sharp fall in the observed Nred; (ii) the formation of an insoluble aggregate of actin; (iii) the formation of (ii) was completely reversed by removal of the M3+; (iv) a complete inhibition of the ATP hydrolysis which always accompanies the G- to F-actin transition; (v) the number of mol of M3+ required to completely inhibit the rise in Nred (above the viscosity of G-actin) was a function of the ionic radii of the 11 lanthanide ions tested; and (vi) the effects described in (i) were not mimicked when the initial protein was in the F form. In the absence of added KCI, divalent cations (e.g. Mg2+) polymerize G-actin but this effect is not mimicked by the addition of the lanthanide ions. However, under these conditions the lanthanide ions cause the formation of an insoluble aggregate of actin. We conclude that with greater than 4 mol of lanthanide ions, G-actin aggregates in a form which contains little or no F-actin and that the lanthanide ion-induced aggregates are therefore different from the Mg2+-induced F-actin paracrystals.  相似文献   

12.
Circular dichroic spectra of native, EDTA-treated and heat-denatured G-actin from chicken gizzard smooth muscle are virtually the same as those of rabbit skeletal muscle actin. The rates of changes produced by EDTA or heat in the secondary structure are, however, higher in the case of gizzard actin. Similar differences were found in the rates of inactivation as measured by loss of polymerizability during incubation with EDTA or Dowex 50. The results are explicable in terms of local differences in the conformation at specific site(s) important for maintaining the native state of actin monomer. Involvement of the ATP binding site was shown by measuring the equilibrium constant for the binding of ATP to the two actins. Difference in the conformation of some additional site(s) is indicated by a higher rate constant of inactivation of nucleotide-free actin observed for gizzard actin. No significant difference was found in the equilibrium constant for the binding of Ca2+ at the single high-affinity site in gizzard and skeletal muscle actin. Comparison of inactivation kinetics of actin from chicken gizzard, rabbit skeletal, bovine aorta, and bovine cardiac muscle suggests that the amino acid replacements Val-17----Cys-17 and/or Thr-89----Ser-89 have a destabilizing effect on the native conformation of G-actin. The results indicate that deletion of the acidic residue at position 1 of the amino acid sequence has no effect on the conformation of the ATP binding site and the high-affinity site for divalent cation as well.  相似文献   

13.
Temperature dependence of the fluorescence intensity and anisotropy decay of N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to Cys374 of actin monomer was investigated to characterize conformational differences between Ca- and Mg-G-actin. The fluorescence lifetime is longer in Mg-G-actin than that in Ca-G-actin in the temperature range of 5-34 degrees C. The width of the lifetime distribution is smaller by 30% in Mg-saturated actin monomer at 5 degrees C, and the difference becomes negligible above 30 degrees C. The semiangle of the cone within which the fluorophore can rotate is larger in Ca-G-actin at all temperatures. Electron paramagnetic resonance measurements on maleimide spin-labeled (on Cys374) monomer actin gave evidence that exchange of Ca2+ for Mg2+ induced a rapid decrease in the mobility of the label immediately after the addition of Mg2+. These results suggest that the C-terminal region of the monomer becomes more rigid as a result of the replacement of Ca2+ by Mg2+. The change can be related to the difference between the polymerization abilities of the two forms of G-actin.  相似文献   

14.
Effect of pH on the mechanism of actin polymerization   总被引:3,自引:0,他引:3  
C T Zimmerle  C Frieden 《Biochemistry》1988,27(20):7766-7772
The effect of pH on the Mg2+-induced polymerization of rabbit skeletal muscle G-actin at 20 degrees C was examined. Polymerization data were obtained at various initial concentrations of Mg2+, Ca2+, and G-actin between pH 6 and 7.5. The data were found to fit a kinetic mechanism for actin polymerization previously proposed at pH 8 in which Mg2+ binding at a moderate-affinity site on actin induces an isomerization of the protein enabling more favorable nucleation [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886]. The data also suggest the formation of actin dimers induced by Mg2+ binding is over 2 orders of magnitude more favorable at pH 6 than at pH 8. Little effect on trimer formation is found over this pH range. In addition, the conformation induced by nonspecific binding of metal to low-affinity sites becomes more favorable as the pH is lowered. The critical concentration for filament formation is also decreased at lower pH. The kinetic data do not support fragmentation occurring under any of the conditions examined. Furthermore, as Mg2+ exchange for Ca2+ at a high-affinity site (Kd less than 10(-9) M) fails to alter significantly the polymerization kinetics, Ca2+ release from this site appears unnecessary for either the nucleation or the elongation of actin filaments.  相似文献   

15.
The kinetics of cytochalasin D binding to monomeric actin   总被引:5,自引:0,他引:5  
It has been shown previously, using G-actin labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylene-diamine, that Mg2+ induces a conformational change in monomeric G-actin as a consequence of binding to a tight divalent cation binding site (Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886). Using the same fluorescent probe, we show that, subsequent to the Mg2+-induced conformational change, cytochalasin D induces a fluorescence decrease. The data are consistent with a mechanism which proposes that, after Mg2+ binding, cytochalasin D binds and induces a second conformational change which results in overall tight binding of the cytochalasin. The initial binding of cytochalasin D to monomeric actin labeled with the fluorescent probe was found to be 200 microM, and the forward and reverse rate constants for the subsequent conformational change were 350 s-1 and 8 s-1, respectively, with an overall dissociation constant to the Mg2+-induced form of 4.6 microM. The conformational change does not occur in monomeric actin in the presence of Ca2+ rather than Mg2+, but Ca2+ competes with Mg2+ for the tight binding site on the G-actin molecule. Direct binding studies show that actin which has not been labeled with the fluorophore binds cytochalasin D more tightly. The conformational change induced by Mg2+ and cytochalasin D precedes the formation of an actin dimer.  相似文献   

16.
C Frieden  K Patane 《Biochemistry》1985,24(15):4192-4196
The role of adenosine 5'-triphosphate (ATP) in the Mg2+-induced conformational change of rabbit skeletal muscle G-actin has been investigated by comparing actin containing bound ADP with actin containing bound ATP. As previously described [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886], N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled G-actin containing ATP undergoes a time-dependent Mg2+-induced fluorescence change that reflects a conformational change in the actin. Addition of Mg2+ to labeled G-actin containing ADP gives no fluorescence change, suggesting that the conformational change does not occur. The fluorescence change can be restored on the addition of ATP. Examination of the time courses of these experiments suggests that ATP must replace ADP prior to the Mg2+-induced change. The Mg2+-induced polymerization of actin containing ADP is extraordinarily slow compared to that of actin containing ATP. The lack of the Mg2+-induced conformational change, which is an essential step in the Mg2+-induced polymerization, is probably the cause for the very slow polymerization of actin containing ADP. On the other hand, at 20 degrees C, at pH 8, and in 2 mM Mg2+, the elongation rate from the slow growing end of an actin filament, measured by using the protein brevin to block growth at the fast growing end, is only 4 times slower for actin containing ADP than for actin containing ATP.  相似文献   

17.
Kinetics of actin elongation and depolymerization at the pointed end   总被引:2,自引:0,他引:2  
We measured the rate of elongation at the pointed filament end with increasing concentrations of G-actin [J(c) function] using villin-capped actin filaments of very small (actin/villin = 3, VA3) and relatively large size (actin/villin = 18, VA18) as nuclei for elongation. The measurements were made under physiological conditions in the presence of both Mg2+ and K+. In both cases the J(c) function was nonlinear. In contrast to the barbed filament end, however, the slope of the J(c) function sharply decreased rather than increased when the monomer concentration was lowered to concentrations near and below the critical concentration c infinity. At zero monomer concentration, depolymerization at the pointed end was very slow with a rate constant of 0.02 s-1 for VA18. When VA3 was used, the nonlinearity of the J(c) function was greatly exaggerated, and the nuclei elongated at actin concentrations below the independently measured critical concentration for the pointed end. This is consistent with and confirms our previous finding [Weber, A., Northrop, J., Bishop, M. F., Ferrone, F. A., & Mooseker, M. S. (1987) Biochemistry (preceding paper in the issue)] that at an actin-villin ratio of 3 a significant fraction of the villin is free and that a series of steady states exist between villin-actin complexes of increasing size and G-actin. The rate constant of elongation seems to increase with increasing G-actin concentrations because of increasing conversion of free villin into villin-actin oligomers during the period of the measurement of the initial elongation rate. The villin-actin oligomers have a much higher rate constant of actin binding than does free villin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Conformational changes in subdomain 2 of actin were investigated using fluorescence probes dansyl cadaverine (DC) or dansyl ethylenediamine (DED) covalently attached to Gln41. Examination of changes in the fluorescence emission spectra as a function of time during Ca2+/Mg2+ and ATP/ADP exchange at the high-affinity site for divalent cation-nucleotide complex in G-actin confirmed a profound influence of the type of nucleotide but failed to detect a significant cation-dependent difference in the environment of Gln41. No significant difference between Ca- and Mg-actin was also seen in the magnitude of the fluorescence changes resulting from the polymerization of these two actin forms. Evidence is presented that earlier reported cation-dependent differences in the conformation of the loop 38-52 may be related to time-dependent changes in the conformation of subdomain 2 in DED- or DC-labeled G-actin, accelerated by substitution of Mg2+ for Ca2+ in CaATP-G-actin and, in particular, by conversion of MgATP- into MgADP-G-actin. These spontaneous changes are associated with a denaturation-driven release of the bound nucleotide that is promoted by two effects of DED or DC labeling: lowered affinity of actin for nucleotide and acceleration of ATP hydrolysis on MgATP-G-actin that converts it into a less stable MgADP form. Evidence is presented that the changes in the environment of Gln41 accompanying actin polymerization result in part from the release of Pi after the hydrolysis of ATP on the polymer. A similarity of this change to that accompanying replacement of the bound ATP with ADP in G-actin is discussed.  相似文献   

19.
Bound-cation exchange affects the lag phase in actin polymerization   总被引:5,自引:0,他引:5  
The delay or lag phase at the onset of polymerization of actin by neutral salt is generally attributed to an actin nucleation reaction. However, when nucleation is circumvented by the use of phalloidin-stabilized nuclei, a lag phase persists when Ca2+-containing actin is polymerized with MgCl2. Pretreatment of actin with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and/or Mg2+ shortens or eliminates this lag phase, suggesting that exchange of the actin-bound divalent cation occurs during this nucleation-independent lag phase. Measurement of the actin-bound cation initially and after brief incubation with EGTA/Mg2+ directly verifies that Mg2+ has replaced Ca2+ as the actin-bound cation, producing a highly polymerizable Mg2+-actin species. Bound-cation exchange prolongs the lag phase in actin polymerization and probably explains what has been termed the monomer activation step in actin polymerization.  相似文献   

20.
When KCl is added to a solution of G-actin to induce full polymerization, a decrease in the rate at which actin undergoes enzymatic proteolysis occurs. This decrease cannot be accounted for by factors affecting the enzymes employed, but rather appears to be due to a change in the conformation of G-actin. Partially polymerized actin solutions also show a reduction in digestibility which is dependent on the F-actin content, suggesting that F-actin is essentially indigestible. Moreover, low rates of digestion were also observed at sub-critical actin concentrations, where actin in the presence of 0.1 m-KCl does not polymerize. This indicates that a confomational change occurs in G-actin before the polymerization step.At sub-critical concentrations in 0.1 m-KCl, actin is in a truly monomeric state as judged by its viscosity characteristics, its inability to enhance the rate of polymerization of G-actin and its possession of ATP as the actin-bound nucleotide. These data support the existence of a new species of actin, called F-ATP-actin monomer, which has the same physical properties and the same bound nucleotide as G-actin, but digestion characteristics like F-actin. Since F-ATP-actin monomers have the same low susceptibility to proteolysis as F-ADP-actin polymers, and because both G-ATP-actin and G-ADP-actin have similar high rates of digestion, the observed change in the conformation of actin cannot be due to the phosphorylated state of the actin-bound nucleotide. Instead, the conformational change appears to be caused by the addition of KCl to G-actin.The newly-detected monomeric species is considered to be an intermediate in the polymerization process where F-ATP-actin monomers form a population of polymerizable molecules which must reach a critical concentration before nucleation and F-actin polymer formation begin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号