首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of steady-state fluorescence quenching methods is reported as a probe of the accessibility of the single fluorescent tryptophan residue of bovine growth hormone (bGH, bovine somatotropin, bSt) in four solution-state conformations. Different bGH conformations were prepared by using previous knowledge of the multi-state nature of the equilibrium unfolding pathway for bGH: alterations in denaturant and protein concentration yielded different bGH conformations (native, monomeric intermediate, associated intermediate and unfolded). Because the intramolecular fluorescence quenching which occurs in the native state is reduced when the protein unfolds to any of the other conformations, steady-state fluorescence intensity measurements can be used to monitor bGH unfolding as well as the formation of the associated intermediate. These steady-state intensity changes have been confirmed with fluorescence lifetime measurements for the different conformational states of bGH. Fluorescence quenching results were obtained using the quenchers iodide (ionic), acrylamide (polar) and trichloroethanol (non-polar). Analysis of the results for native-state bGH reveals that the tryptophan environment is slightly non-polar (in agreement with the emission maximum of 335 nm) and the tryptophan is more exposed to acrylamide than most native-state tryptophan residues which have been studied. The tryptophan is most accessible to all quenchers in the unfolded state, because no steric restrictions inhibit quencher interaction with the tryptophan residue. The iodide quenching results indicate that the associated intermediate tryptophan is not accessible to iodide, probably due to negative charges inhibiting iodide penetration. The associated intermediate tryptophan is less accessible to all three quenchers than the monomeric intermediate tryptophan, due to tight packing of molecules in the associated intermediate state.  相似文献   

2.
The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. We describe the use of frequency domain fluorescence spectroscopy to determine the conformational and environmental changes associated with the interaction of single tryptophan amphipathic peptides with a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide known to associate with lipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. In aqueous solution, the peptides are unstructured and a triple-exponential function is required to fit the decay data. Association of the peptides with small unilamellar vesicles composed of egg phosphatidylcholine reduces the complexity of the fluorescence decays to a double exponential function, with a reduced dependence of the preexponential amplitude on peptide sequence. The data are interpreted in terms of a rotamer model in which the modality and relative proportions of the lifetime components are related to the population distribution of tryptophan chi1 rotamers about the Calpha-Cbeta bond. Peptide secondary structure and the disposition of the tryptophan residue relative to the lipid and aqueous phases in the peptide-lipid complex affect the local environment of tryptophan and influence the distribution of side-chain rotamers. The results show that measurement of the temporal decay of tryptophan emission provides a useful adjunct to other biophysical techniques for investigating peptide-lipid and protein-membrane interactions.  相似文献   

3.
S F Pearce  E Hawrot 《Biochemistry》1990,29(47):10649-10659
Synthetic peptides corresponding to sequences contained within residues 173-204 of the alpha-subunit in the nicotinic acetylcholine receptor (nAChR) of Torpedo californica bind the competitive antagonist alpha-bungarotoxin (BGTX) with relative high affinity. Since the synthetic peptide fragments of the receptor and BGTX each contain a small number of aromatic residues, intrinsic fluorescence studies were used to investigate their interaction. We examined a number of receptor-derived peptide fragments of increasing length (4-32 amino acids). Changes in the lambda max and quantum yield with increasing polypeptide chain length suggest an increase in the hydrophobicity of the tryptophan environment. When selective excitation and subtraction were used to reveal the tyrosine fluorescence of the peptides, a significant red shift in emission was observed and was found to be due to an excited-state tyrosinate. The binding of BGTX to the receptor-derived peptide fragments resulted in a large increase in fluorescence. In addition, at equilibrium, the lambda max of tryptophan fluorescence was shifted to shorter wavelengths. The. fluorescence enhancement, which was saturable with either peptide or BGTX, was used to determine the dissociation constants for the complexes. At pH 7.4, the apparent Kd for a dodecameric peptide (alpha 185-196), consisting of residues 185-196 in the alpha-subunit of the nAChR from Torpedo californica, was 1.4 microM. The Kd for an 18-mer (alpha 181-198), consisting of residues 181-198 of the Torpedo alpha-subunit, was 0.3 microM. No binding or enhanced fluorescence was observed with an irrelevant synthetic peptide of comparable composition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The fluorescence decay kinetics at different ranges of the emission spectrum is reported for 17 proteins. Out of eight proteins containing a single tryptophan residue per molecule, seven proteins display multiexponential decay kinetics, suggesting that variability in protein structure may exist for most proteins. Tryptophan residues whose fluorescence spectrum is red shifted may have lifetimes longer than 7 ns. Such long lifetimes have not been detected in any of the denatured proteins studied, indicating that in native proteins the tryptophans having a red-shifted spectrum are affected by the tertiary structure of the protein. The fluorescence decay kinetics of ten denatured proteins studied obey multiexponential decay functions. It is therefore concluded that the tryptophan residues in denatured proteins can be grouped in two classes. The first characterized by a relatively long lifetime of about 4 ns and the second has a short lifetime of about 1.5 ns. The emission spectrum of the group which is characterized by the longer lifetime is red shifted relative to the emission spectrum of the group characterized by the shorter lifetime. A comparison of the decay data with the quantum yield of the proteins raises the possibility that a subgroup of the tryptophan residues is fully quenched. It is noteworthy that despite this heterogeneity in the environment of tryptophan residues in each denatured protein, almost the same decay kinetics has been obtained for all the denatured proteins studied in spite of the vastly different primary structures. It is therefore concluded that each tryptophan residue interacts in a more-or-less random manner with other groups on the polypeptide chain, and that on the average the different tryptophan residues in denatured proteins have a similar type of environment.  相似文献   

5.
6.
The time-resolved fluorescence intensity and anisotropy decays of the immunophilin domain of FKBP59 (FKBP59-I)--a protein containing two tryptophan residues (the W89, buried in a hydrophobic pocket and the W59, water exposed)--were studied using the time-correlated single photon counting (TCSPC) technique. The synchrotron radiation machine Super-ACO (Orsay, France) was used as a pulsed light source (approximately 8MHz). A mainly dual and discrete excited state lifetime distribution was previously evidenced (Rouvière et al., 1997). The lifetime heterogeneity has been suggested to be relevant to the topological tryptophan heterogeneity. Indeed, taking into account the spectroscopic properties of the single tryptophan residue of the immunophilin FKBP12, a highly homologous protein containing a single tryptophan residue, the short- and the long-lived lifetime species were assumed to be related to the solvent-buried and to the solvent-exposed fluorescent residues, respectively. We definitely demonstrate this point by describing the dynamical properties of each tryptophan residue of the FKBP59-I as a function of the emission wavelength. The data of the polarized components of the fluorescence emission were analyzed by the Maximum Entropy Method using a one-dimensional model (each excited-state lifetime tau being associated with each rotational correlation time theta) and a two-dimensional model (without any a priori association constraint between the tau's and the theta's). The two dimensional analysis of the polarized fluorescence intensity decays by MEM show the existence of a correlation between fast picosecond dynamics of the indole ring with the shortest-lived and blue emitting species. Conversely, the long-lived and red emitting population is mainly associated to the Brownian motion of the protein. A protein flexibility of the region located around the W59 residue, but slightly contributing to the light depolarization process, is also evidenced and can be specifically attributed to the red emitting population.  相似文献   

7.
A power-like decay function, characterized by the mean excited-state lifetime and relative variance of lifetime fluctuation around the mean value, was applied in analysis of fluorescence decays measured with the aid of time-correlated single photon counting. We have examined the fluorescence decay, in neutral aqueous medium, of tyrosine (L-tyrosine and N-acetyl-L-tyrosinamide), and of the tyrosine residues in a tryptophan-free protein, the enzyme purine nucleoside phosphorylase from Escherichia coli in a complex with formycin A (an inhibitor), and orthophosphate (a co-substrate). Tryptophan fluorescence decay was examined in neutral aqueous medium for L-tryptophan, N-acetyl-L-tryptophanamide, and for two tryptophan residues in horse liver alcohol dehydrogenase. To detect solvent effect, fluorescence decay of Nz-acetyl-L-tryptophanamide in aqueous medium was compared with that in dioxan. Hitherto, complex fluorescence decays have usually been analyzed with the aid of a multiexponential model, but interpretation of the individual exponential terms (i.e., pre-exponential amplitudes and fluorescence lifetimes), has not been adequately characterized. In such cases the intensity decays were also analyzed in terms of the lifetime distribution as a consequence of an interaction of fluorophore with environment. We show that the power-like decay function, which can be directly obtained from the gamma distribution of fluorescence lifetimes, is simpler and provides good fits to highly complex fluorescence decays as well as to a purely single-exponential decay. Possible interpretation of the power-like model is discussed.  相似文献   

8.
The binding of basic amphipathic fluorescent peptides to lipid bilayers was studied in relation to their antimicrobial activity. Four fluorescent peptides containing pyrenylalanine or tryptophan in an amphipathic basic peptide (4(4] consisting of four repeated units of tetrapeptide, -L-Leu-L-Ala-L-Arg-L-Leu-, were found to have antimicrobial activities against Gram-positive bacteria and to take conformations with fairly high alpha-helical content both in aqueous solutions and liposomes. The fluorescence spectroscopic data suggested that the pyrenylalanine-peptide existed as a monomer in methanol or liposomes but as an oligomer in aqueous solutions to form an excimer between pyrenylalanyl residues. Upon binding with liposomes, the fluorescence spectra of the tryptophan-containing peptide shifted to a shorter wavelength, indicating the change in the state of tryptophan from hydrophilic environment to hydrophobic one. The analytical data for the quenching of tryptophan fluorescence by I- anion suggest that the tryptophan residue in the peptide is not deeply buried in the hydrophobic core of the bilayers. Based on these findings, it is suggested that the peptides may interact with liposomes in such a manner that they lie parallel to the surface of the lipid bilayers with their hydrophobic regions shallowly in the amphipathic moiety of the bilayers.  相似文献   

9.
The peptide bond quenches tryptophan fluorescence by excited-state electron transfer, which probably accounts for most of the variation in fluorescence intensity of peptides and proteins. A series of seven peptides was designed with a single tryptophan, identical amino acid composition, and peptide bond as the only known quenching group. The solution structure and side-chain chi(1) rotamer populations of the peptides were determined by one-dimensional and two-dimensional (1)H-NMR. All peptides have a single backbone conformation. The -, psi-angles and chi(1) rotamer populations of tryptophan vary with position in the sequence. The peptides have fluorescence emission maxima of 350-355 nm, quantum yields of 0.04-0.24, and triple exponential fluorescence decays with lifetimes of 4.4-6.6, 1.4-3.2, and 0.2-1.0 ns at 5 degrees C. Lifetimes were correlated with ground-state conformers in six peptides by assigning the major lifetime component to the major NMR-determined chi(1) rotamer. In five peptides the chi(1) = -60 degrees rotamer of tryptophan has lifetimes of 2.7-5.5 ns, depending on local backbone conformation. In one peptide the chi(1) = 180 degrees rotamer has a 0.5-ns lifetime. This series of small peptides vividly demonstrates the dominant role of peptide bond quenching in tryptophan fluorescence.  相似文献   

10.
Fluorescence lifetime distributions in proteins.   总被引:10,自引:7,他引:3       下载免费PDF全文
The fluorescence lifetime value of tryptophan residues varies by more than a factor of 100 in different proteins and is determined by several factors, which include solvent exposure and interactions with other elements of the protein matrix. Because of the variety of different elements that can alter the lifetime value and the sensitivity to the particular environment of the tryptophan residue, it is likely that non-unique lifetime values result in protein systems. The emission decay of most proteins can be satisfactorily described only using several exponential components. Here it is proposed that continuous lifetime distributions can better represent the observed decay. An approach based on protein dynamics is presented, which provides fluorescence lifetime distribution functions for single tryptophan residue proteins. First, lifetime distributions for proteins interconverting between two conformations, each characterized by a different lifetime value, are derived. The evolution of the lifetime values as a function of the interconversion rate is studied. In this case lifetime distributions can be obtained from a distribution of rates of interconversion between the two conformations. Second, the existence of a continuum of energy substates within a given conformation was considered. The occupation of a particular energy substate at a given temperature is proportional to the Boltzmann factor. The density of energy states of the potential well depends upon the width of the well, which determines the degree of freedom the residue can move in the conformational space. Lifetime distributions can be obtained by association of each energy substate with a different lifetime value and assuming that the average conformation can change as the energy of the substate is increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Chakraborty S  Ittah V  Bai P  Luo L  Haas E  Peng Z 《Biochemistry》2001,40(24):7228-7238
The fluorescence properties of three variants of alpha-lactalbumin (alpha-LA) containing a single tryptophan residue were investigated under native, molten globule, and unfolded conditions. These proteins have levels of secondary structure and stability similar to those of the wild type. The fluorescence signal in the native state is dominated by that of W104, with the signal of W60 and W118 significantly quenched by the disulfide bonds in their vicinity. In the molten globule state, the magnitude of the fluorescence signal of W60 and W118 increases, due to the loss of rigid, specific side chain packing. In contrast, the magnitude of the signal of W104 decreases in the molten globule state, perhaps due to the protonation of H107 or quenching by D102 or K108. The solvent accessibilities of individual tryptophan residues were investigated by their fluorescence emission maximum and by acrylamide quenching studies. In the native state, the order of solvent accessibility is as follows: W118 > W60 > W104. This order changes to W60 > W104 > W118 in the molten globule state. Remarkably, the solvent accessibility of W118 in the alpha-LA molten globule is lower than that in the native state. The dynamic properties of the three tryptophan residues were examined by time-resolved fluorescence anisotropy decay studies. The overall rotation of the molecule can be observed in both the native and molten globule states. In the molten globule state, there is an increase in the extent of local backbone fluctuations with respect to the native state. However, the fluctuation is not sufficient to result in complete motional averaging. The three tryptophan residues in the native and molten globule states have different degrees of motional freedom, reflecting the folding pattern and dynamic heterogeneity of these states. Taken together, these studies provide new insight into the structure and dynamics of the alpha-LA molten globule, which serves as a prototype for partially folded proteins.  相似文献   

12.
Proteins have evolved to fold and function within a cellular environment that is characterized by high macromolecular content. The earliest step of protein folding represents intrachain contact formation of amino acid residues within an unfolded polypeptide chain. It has been proposed that macromolecular crowding can have significant effects on rates and equilibria of biomolecular processes. However, the kinetic consequences on intrachain diffusion of polypeptides have not been tested experimentally, yet. Here, we demonstrate that selective fluorescence quenching of the oxazine fluorophore MR121 by the amino acid tryptophan (Trp) in combination with fast fluorescence correlation spectroscopy (FCS) can be used to monitor end-to-end contact formation rates of unfolded polypeptide chains. MR121 and Trp were incorporated at the terminal ends of polypeptides consisting of repetitive units of glycine (G) and serine (S) residues. End-to-end contact formation and dissociation result in "off" and "on" switching of MR121 fluorescence and underlying kinetics can be revealed in FCS experiments with nanosecond time resolution. We revisit previous experimental studies concerning the dependence of end-to-end contact formation rates on polypeptide chain length, showing that kinetics can be described by Gaussian chain theory. We further investigate effects of solvent viscosity and temperature on contact formation rates demonstrating that intrachain diffusion represents a purely diffusive, entropy-controlled process. Finally, we study the influence of macromolecular crowding on polypeptide chain dynamics. The data presented demonstrate that intrachain diffusion is fast in spite of hindered diffusion caused by repulsive interactions with macromolecules. Findings can be explained by effects of excluded volume reducing chain entropy and therefore accelerating the loop search process. Our results suggest that within a cellular environment the early formation of structural elements in unfolded proteins can still proceed quite efficiently in spite of hindered diffusion caused by high macromolecular content.  相似文献   

13.
E Bismuto  E Gratton  G Irace 《Biochemistry》1988,27(6):2132-2136
Proteins exhibit, even in their native state, a large number of conformations differing in small details (substates). The fluorescence lifetime of tryptophanyl residues can reflect the microenvironmental characteristics of these subconformations. We have analyzed the lifetime distribution of the unique indole residue of tuna apomyoglobin (Trp A-12) during the unfolding induced by temperature or guanidine hydrochloride. The results show that the increase of the temperature from 10 to 30 degrees C causes a sharpening of the lifetime distribution. This is mainly due to the higher rate of interconversion among the conformational substates in the native state. A further temperature increase produces partially or fully unfolded states, resulting in a broadening of the tryptophanyl lifetime distribution. The data relative to the guanidine-induced unfolding show a sigmoidal increase of the distribution width, which is due to the transition of the protein structure from the native to the random-coiled state. The broadening of the lifetime distribution indicates that, even in the fully unfolded protein, the lifetime of the tryptophanyl residues is influenced by the protein matrix, which generates very heterogeneous microenvironments.  相似文献   

14.
The effects of Ca2+ and substrate analogue binding on the conformational dynamics of porcine pancreas phospholipase A2 (PLA2) in different regions was explored by combining site-directed mutagenesis and time-resolved fluorescence measurements. The single tryptophan residue (Trp-3) of the wild-type protein (W3), in the alpha-helix A, was replaced by a phenylalanine residue (W3F), whereafter Trp was substituted either for leucine-31 (W31), located in the calcium binding loop, or for phenylalanine-94 (W94), located at the "back side" of the enzyme. Furthermore, mutants lacking the 62-66 sequence were constructed with the Trp at position 3 (delta W3) or 31 (delta W31). The total fluorescence intensity decays of Trp in each protein, in the protein-calcium and the protein-calcium-substrate analogue complexes, analyzed by the maximum entropy method (MEM) can be interpreted as distributions of separated lifetime classes. In the case of the W94 mutant, a major short-lived excited-state population (tau approximately 50 ps) is observed, probably deactivated by the interaction with two proximate disulfide bridges via a radiationless process. For the four other mutants, the respective barycenters of the four lifetime classes display comparable values, but the amplitude distributions are different for Trp-3 and Trp-31. The rotational mobility of the Trp residue varies along the peptide chain. Trp-3 experiences only a fast hindered motion. Trp-31 is sensitive to an additional local flexibility that is absent in the N-terminal part of the protein. The largest wobbling angle is observed at position 94. No effect of calcium binding occurs on the lifetime distribution of the Trp-3 and Trp-94 residues. Their mobilities are not affected. In contrast, calcium binding displays a strong influence on the excited-state population distribution of Trp-31. A major population decaying with the longest lifetime is selected in the W31 protein and contributes to approximately 50% of the decay. The local flexibility and the amplitude of motion of Trp-31 is wider in the protein-calcium complex than in the unliganded protein. Binding of the monomeric substrate analogue n-dodecylphosphocholine (C12PN) in the presence of calcium slightly affects the Trp-3 excited-state population distribution and its mobility. Trp-31 is more sensitive to this binding. In particular, a more restricted rotation of the Trp-31 residue and a decrease of the peptide local flexibility as protein-calcium complexes are observed in both the W31 and delta W31 mutants.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The unfolding of holo and apo forms of human Cu/Zn superoxide dismutase by guanidine hydrochloride has been investigated by steady-state and dynamic fluorescence. In agreement with previous observations, a stabilizing effect of the metal ions on the protein tertiary structure was apparent from comparison of apo- and holoproteins, which both showed a sharp sigmoidal transition though at different denaturant concentrations. The transition was also followed by circular dichroism to check the extent of secondary structure present at each denaturant concentration. The results are incompatible with a simple two-state mechanism for denaturation. The occurrence of a more complicated process is supported by the emission decay properties of the single tryptophanyl residue at different denaturant concentrations. A complex decay function, namely, two discrete exponentials or a continuous distribution of lifetimes, was always required to fit the data. In particular, the width of the lifetime distribution, which is maximum at the transition midpoint, reflects heterogeneity of the tryptophan microenvironment and thus the presence of different species along the denaturation pathway. In the unfolded state, the width of the lifetime distribution is broader than in the folded state probably because the tryptophan residue is affected by a larger number of local conformations. The dissociation of the dimer was also studied by varying the protein concentration at different denaturant concentrations. This process affects primarly the surface of the protein rather than its secondary structure as shown by a comparison between the tryptophan emission decay and circular dichroism data under the same conditions. Another consequence of dissociation is a greater instability in the structure of the monomers, which are more easily unfolded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We used 2 GHz harmonic content frequency-domain fluorescence to measure the intensity and the anisotropy decays from the intrinsic tryptophan fluorescence from human hemoglobin (Hb). The tryptophan intensity decays are dominated by a short-lived component which accounts for 35-60% of the total steady state intensity. The decay time of this short component varies from 9 to 27 ps and this component is sensitive to the ligation state of Hb. Our error analyses indicate the uncertainty is about +/- 3 ps. The intensity decays also show two longer lived components near 0.7 and 8 ns, which are probably due either to impurities or to Hb molecules in conformations which do not permit energy transfer. The anisotropy decays indicate the tryptophan residues in Hb are highly mobile, with apparent correlation times near 55 ps.  相似文献   

17.
We have monitored the membrane-bound channel and nonchannel conformations of gramicidin utilizing red-edge excitation shift (REES), and related fluorescence parameters. In particular, we have used fluorescence lifetime, polarization, quenching, chemical modification, and membrane penetration depth analysis in addition to REES measurements to distinguish these two conformations. Our results show that REES of gramicidin tryptophans can be effectively used to distinguish conformations of membrane-bound gramicidin. The interfacially localized tryptophans in the channel conformation display REES of 7 nm whereas the tryptophans in the nonchannel conformation exhibit REES of 2 nm which highlights the difference in their average environments in terms of localization in the membrane. This is supported by tryptophan penetration depth measurements using the parallax method and fluorescence lifetime and polarization measurements. Further differences in the average tryptophan microenvironments in the two conformations are brought out by fluorescence quenching experiments using acrylamide and chemical modification of the tryptophans by N-bromosuccinimide. In summary, we report novel fluorescence-based approaches to monitor conformations of this important ion channel peptide. Our results offer vital information on the organization and dynamics of the functionally important tryptophan residues in gramicidin.  相似文献   

18.
We report tryptophan fluorescence measurements of emission intensity, iodide quenching, and anisotropy that describe the environment and dynamics at X and Y sites in stable collagen-like peptides of sequence (Gly-X-Y)(n). About 90% of tryptophans at both sites have similar solvent exposed fluorescence properties and a lifetime of 8.5-9 ns. Analysis of anisotropy decays using an associative model indicates that these long lifetime populations undergo rapid depolarizing motion with a 0.5 ns correlation time; however, the extent of fast motion at the Y site is considerably less than the essentially unrestricted motion at the X site. About 10% of tryptophans at both sites have a shorter ( approximately 3 ns) lifetime indicating proximity to a protein quenching group; these minor populations are immobile on the peptide surface, depolarizing only by overall trimer rotation. Iodide quenching indicates that tryptophans at the X site are more accessible to solvent. Side chains at X sites are more solvent accessible and considerably more mobile than residues at Y sites and can more readily fluctuate among alternate intermolecular interactions in collagen fibrils. This fluorescence analysis of collagen-like peptides lays a foundation for studies on the structure, dynamics, and function of collagen and of triple-helical junctions in gelatin gels.  相似文献   

19.
The ability of peptides to form biologically active conformations that bind to receptors is governed by their dynamics and their propensity to form stable structures. Such factors are consequently important in the design of peptide drugs. Moreover, the stability of such peptides depends on interactions of the peptide with the surrounding matrix. In this article, we study the effect of the polymer poly(vinyl pyrrolidone) (PVP) on the mobility and orientational dynamics of tyrosine and a model peptide, Val-Tyr-Pro-Asn-Gly-Ala (VYPNGA) in glycerol-water solutions. Orientational dynamics are studied experimentally by time-resolved fluorescence anisotropy decays of tyrosine. The presence of PVP leads to the possibility of a distribution of environments for the peptide. The orientational dynamics of tyrosine show that the probe molecule experiences two very different environments. In one, tyrosine rotational motion is weakly coupled to PVP, while in the other, tyrosine interacts strongly with PVP leading to much slower rotational times. The dynamics of VYPNGA are more complex. Fast intramolecular, localized reorientations of the tyrosine are detected. The temperature dependence of the reorientational dynamics of the tyrosine side chain reveal that these motions are shielded from solvent friction. In contrast, global motions of the peptide are severely restricted by PVP, suggesting the ability of the polymer to restrict peptide mobility.  相似文献   

20.
The effects of proline and X-Pro peptide bond conformations on the fluorescence properties of tyrosine in peptides corresponding to parts of a proposed chain-folding initiation site in bovine pancreatic ribonuclease A are examined by time-resolved and steady-state fluorescence spectroscopy. In peptides with Tyr-Pro sequences, the conformational constraints of proline on a preceding residue result in significant fluorescence quenching for both trans and cis peptide bond conformations. Small peptides containing Pro-Tyr sequences, on the other hand, do not exhibit fluorescence quenching compared to Ac-Tyr-NHMe. Studies of fluorescence decay in the tryptic fragment of performic acid oxidized ribonuclease corresponding to residues 105-124 (i.e., O-T-16) demonstrate the presence of at least two environments of the single tyrosine chromophore (in the sequence Asn113-Pro114-Tyr115). In these two (ensemble-averaged) environments, tyrosine has shorter and longer lifetimes, respectively, than in Ac-Tyr-NHMe. The fluorescence heterogeneity in O-T-16 does not correlate with X-Pro cis/trans conformational heterogeneity that can be detected by nuclear magnetic resonance (NMR) spectroscopy. Instead, the fluorescence heterogeneity in O-T-16 arises from the presence of multiple conformations with the same X-Pro peptide bond conformations which interconvert rapidly on the 1H NMR time scale (tau much less than 1 ms) but are distinguishable on the fluorescence lifetime time scale (tau greater than or equal to 1 ns). From comparisons with the tyrosine fluorescence decay of smaller synthetic peptides, it is concluded that the long-lifetime tyrosine fluorescence component of O-T-16 arises from interactions involving residues outside the Asn113-Pro114-Tyr115-Val116-Pro117 sequence, which either stabilize particular local conformations in the vicinity of Tyr115 or act directly to protect Tyr115 from efficient fluorescence quenching. The short-lifetime component of O-T-16 is also observed for the pentapeptide Ac-Asn-Pro-Tyr-Val-Pro-NHMe. The data provide evidence for a nonrandom polypeptide conformation of O-T-16 under conditions of solvent pH and temperature at which the complete disulfide-intact ribonuclease molecule is fully folded. Implications of this work for the interpretation of fluorescence-detected unfolding experiments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号