首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To investigate the influence of different fibre materials on the colonization of textiles by skin bacteria present in human sweat. Methods and Results: The total bacterial content of axillary sweat samples was determined using DNA quantification, and the diversity of bacteria present was investigated. Fabrics made of different fibres were then challenged with these sweat samples; the bacterial DNA was quantified, and the bacterial taxa present were determined. We found differences in the overall colonization, with polyester and polyamide showing the highest bacterial mass. Also, significant differences in the various taxa of bacteria present on the different materials were found. In general, synthetic materials showed a selective growth of bacterial taxa underrepresented in sweat. In contrast, a cellulose‐based material showed only very few taxa, identically with those predominant in sweat. Conclusions: Our investigations demonstrated that besides the bacterial content of sweat itself, the type of material has a strong impact on the bacterial colonization of textiles. Significance and Impact of the Study: Odour generation is one of several effects resulting from an interaction of skin bacteria with textiles, and it is a common experience that there are differences in odour generation by different materials. Our investigations suggest that a selective growth of potentially odour‐producing bacteria may account for this.  相似文献   

2.
Recently, various studies have focused on the development of multifunctional non-woven polyethylene terephthalate (PT; polyester) textiles. Herein, we introduce multifunctional non-woven polyester fabrics by pad dry curing silver nitrate (AgNO3) and aniline monomer into plasma-pretreated non-woven PT textile. This creates a nanocomposite layer of silver nanoparticles (AgNPs) and polyaniline (PANi) on the fabric surface. In order to prepare a non-woven fibrous mat, we applied the melt-spinning technique on previously shredded recycled PT plastic waste. On the surface of the cloth, PANi was synthesized by REDOX polymerization of aniline. Due to the oxidative polymerization, the silver ions (Ag+) were converted to Ag0NPs. PANi acted as a conductor while AgNPs inhibited the growth of microorganisms. Microwave-assisted curing with trimethoxyhexadecylsilane (TMHDS) gave PT textiles with superhydrophobic properties. The morphological studies were performed using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The stiffness and breathability of finished non-woven PT textile materials were analyzed to establish their comfort levels. Both of Escherichia coli and Staphylococcus aureus were used to test the efficacy of the AgNPs-treated textiles as antimicrobial materials. Moreover, the processed polyester textiles showed excellent electrical conductivity and great ultraviolet-ray blocking.  相似文献   

3.
Current battery technologies are known to suffer from kinetic problems associated with the solid‐state diffusion of Li+ in intercalation electrodes materials. Not only the use of nanostructure materials but also the design of electrode architectures can lead to more advanced properties. Here, advanced electrode architectures consisting of carbon textiles conformally covered by Li4Ti5O12 nanocrystal are rationally designed and synthesized for lithium ion batteries. The efficient two‐step synthesis involves the growth of ultrathin TiO2 nanosheets on carbon textiles, and subsequent conversion into spinel Li4Ti5O12 through chemical lithiation. Importantly, this novel approach is simple and general, and it is used to successfully produce LiMn2O4/carbon composites textiles, one of the leading cathode materials for lithium ion batteries. The resulting 3D textile electrode, with various advantages including the direct electronic pathway to current collector, the easy access of electrolyte ions, the reduced Li+/e? diffusion length, delivers excellent rate capability and good cyclic stability over the Li‐ion batteries of conventional configurations.  相似文献   

4.
There is a lack of relevant methods to assess the colonization of textiles by skin bacteria because present methods are mainly culture-based procedures. Therefore, the goal of this study was to develop a fast and sensitive culture-independent procedure for the quantification of microbial colonization and growth on textiles. We have established a suitable protocol to use DNA quantification as a reliable method for in vitroand in vivoinvestigations of textiles. For DNA extraction, a two-step procedure comprising treatment of the textile with a solution containing Triton X-100 and lysozyme for 1 h and a successive treatment by SDS and proteinase K for 2 h turned out to be most efficient. DNA extracted from textiles and fabrics was than quantified with the highly sensitive PicoGreen fluorescent dye. In vitrochallenge tests demonstrated a strong correlation between numbers of bacteria on textiles and amount of DNA extracted from textiles. Therefore, this method was used to compare different materials after in vivotrials for assessment of their susceptibility for microbial colonization and growth.  相似文献   

5.
Electronic textiles are a vanguard of an emerging generation of smart products. They consist of small electronic devices that are seamlessly embedded into clothing and technical textiles. E‐textiles provide enhanced functions in a variety of unobtrusive and convenient ways. Like many high‐tech products, e‐textiles may evolve to become a mass market in the future. In this case, large amounts of difficult‐to‐recycle products will be discarded. That can result in new waste problems. This article examines the possible end‐of‐life implications of textile‐integrated electronic waste. As a basis for assessment, the innovation trends of e‐textiles are reviewed, and an overview of their material composition is provided. Next, scenarios are developed to estimate the magnitude of future e‐textile waste streams. On that base, established disposal and recycling routes for e‐waste and old textiles are assessed in regard to their capabilities to process a blended feedstock of electronic and textile materials. The results suggest that recycling old e‐textiles will be difficult because valuable materials are dispersed in large amounts of heterogeneous textile waste. Moreover, the electronic components can act as contaminants in the recycling of textile materials. We recommend scrutinizing the innovation trend of technological convergence from the life cycle perspective. Technology developers and product designers should implement waste preventative measures at the early phases in the development process of the emerging technology.  相似文献   

6.
Summary The author deals in this 3rd part of his communication with the general results of the cultural tests carried out on different textiles. He reports on his further investigations withE. inguinale grown from the soil and investigates its effect on Oxford textiles. He points out the importance of commensalistic systems and demonstrates the part played by wool fibres as nutrient base for dermatophytes. He draws a parallel between the conditions of the formation of the ring-shaped cultures developing on textiles and the genesis of herds of trichophytosis on human skin. Finally he deals with the presumable function of synthetic fibres in the induction of trichophytic herds on human skin.  相似文献   

7.
The significance of inspiration from nature for technical textiles and for fibrous composite materials is demonstrated by examples of already existing technical solutions that either parallel biology or are indeed inspired by biological models. The two different basic types of biomimetic approaches are briefly presented and discussed for the "technical plant stem." The technical plant stem is a biomimetic product inspired by a variety of structural and functional properties found in different plants. The most important botanical templates are the stems of the giant reed (Arundo donax, Poaceae) and of the Dutch rush (Equisetum hyemale, Equisetaceae). After analysis of the structural and mechanical properties of these plants, the physical principles have been deduced and abstracted and finally transferred to technical applications. Modern computer-controlled fabrication methods for producing technical textiles and for structuring the embedding matrix of compound materials render unique possibilities for transferring the complex structures found in plants, which often are optimized on several hierarchical levels, into technical applications. This process is detailed for the technical plant stem, a biomimetic, lightweight, fibrous composite material based on technical textiles with optimized mechanical properties and a gradient structure.  相似文献   

8.
Cover illustration: Polymer and Textile Biotech. Polymer biotechnology has led to highly functional materials with wideranging applications from textiles to medicine. This includes protective clothing, which could for example be used for future space trips, as well as for tissue engineering. This special issue of BTJ, edited by Georg Guebitz, Graz University of Technology, Austria (co-edited by Giuliano Freddi and Artur Cavaco-Paulo) provides a broad overview of novel biotechnological approaches for processing of materials and textiles. Cover image: Astronaut © Lasse Kristensen – Fotolia.com  相似文献   

9.
Ethanol production from cotton linter and waste of blue jeans textiles was investigated. In the best case, alkali pretreatment followed by enzymatic hydrolysis resulted in almost complete conversion of the cotton and jeans to glucose, which was then fermented by Saccharomyces cerevisiae to ethanol. If no pretreatment applied, hydrolyses of the textiles by cellulase and beta-glucosidase for 24 h followed by simultaneous saccharification and fermentation (SSF) in 4 days, resulted in 0.140-0.145 g ethanol/g textiles, which was 25-26% of the corresponding theoretical yield. A pretreatment with concentrated phosphoric acid prior to the hydrolysis improved ethanol production from the textiles up to 66% of the theoretical yield. However, the best results obtained from alkali pretreatment of the materials by NaOH. The alkaline pretreatment of cotton fibers were carried out with 0-20% NaOH at 0 degrees C, 23 degrees C and 100 degrees C, followed by enzymatic hydrolysis up to 4 days. In general, higher concentration of NaOH resulted in a better yield of the hydrolysis, whereas temperature had a reverse effect and better results were obtained at lower temperature. The best conditions for the alkali pretreatment of the cotton were obtained in this study at 12% NaOH and 0 degrees C and 3 h. In this condition, the materials with 3% solid content were enzymatically hydrolyzed at 85.1% of the theoretical yield in 24 h and 99.1% in 4 days. The alkali pretreatment of the waste textiles at these conditions and subsequent SSF resulted in 0.48 g ethanol/g pretreated textiles used.  相似文献   

10.
Our previous studies have led to a novel "nonrelease" approach to making materials bactericidal by covalently attaching certain moderately hydrophobic polycations to their surfaces. In the present work, this strategy is extended beyond the heretofore-used nonporous materials to include common woven textiles (cotton, wool, nylon, and polyester). Pieces of such cloths derivatized with N-hexylated+methylated high-molecular-weight polyethylenimine (PEI) are strongly bactericidal against several airborne Gram-positive and Gram-negative bacteria. In contrast, the immobilized and N-alkylated PEIs of low molecular weight have only a weak, if any, bactericidal activity. These findings support a mechanism of the antibacterial action whereby high-molecular-weight and hydrophobic polycationic chains penetrate bacterial cell membranes/walls and fatally damage them. The bactericidal textiles prepared herein are lethal not only to pathogenic bacteria but to fungi as well.  相似文献   

11.
快速、高效的羊绒羊毛织品DNA提取方法的建立   总被引:1,自引:0,他引:1  
目的:建立一种快速、高效的羊绒羊毛纺织品DNA提取的方法。方法:采用chelex-100法的3种处理、试剂盒法分别提取羊绒羊毛织品的DNA,用18S rDNA片段、山羊和绵羊源性成分PCR扩增结果来比较提取效果。结果:试剂盒法提取DNA的效果优于chelex-100法,整个提取过程约需2h。9种供试材料均提取到DNA,且含有山羊和/或绵羊源性成分,与显微镜观察结果的符合率为100%。结论:建立的试剂盒法是一种快速、高效的适用于羊绒羊毛织品DNA提取的方法,为应用分子生物学方法鉴别山羊绒和绵羊毛奠定了基础。  相似文献   

12.
Cellulases hydrolyze the β-1,4 linkages of cellulose and are widely used in food, brewing and wine, animal feed, textiles and laundry, and pulp and paper industries, especially for hydrolyzing cellulosic materials into sugars, which can be fermented to produce useful products such as ethanol. Metagenomics has become an alternative approach to conventional culture-dependent methods as it allows exhaustive mining of microbial genomes in their natural environments. This review covers the current state of research and challenges in mining novel cellulase genes from the metagenomes of various environments, and discusses the potential biotechnological applications of metagenome-derived cellulases.  相似文献   

13.
甲基淀粉是一种重要的淀粉衍生物,也是一种用途十分广泛的功能性精细高分子材料,其应用涉及到食品、医药、纺织、建材、冶金等众多工业领域。本文对淀粉甲基化反应的方法进行了全面分析,包括卤代烷法、硫酸二甲酯法、重氮甲烷法及碳酸二甲酯等,并特别指出碳酸二甲酯(DMC)作为淀粉甲基化试剂的技术优势和潜在商业价值。  相似文献   

14.

Purpose

The purpose of this paper is to provide an improved (up-to-date) insight into the environmental burden of textiles made of the base materials cotton, polyester (PET), nylon, acryl, and elastane. The research question is: Which base material and which life cycle stage (cradle-to-gate as well as cradle-to-grave) have the biggest impact on the environment?

Methods

Life cycle inventory (LCI) data are collected from the literature, life cycle assessment (LCA) databases, and emission registration database of the Dutch government, as well as communications with both manufacturing companies of production equipment and textile companies. The output of the calculations is presented in four single indicators: Eco-costs 2012 (a prevention-based indicator), CO2 equivalent (carbon footprint), cumulative energy demand (CED), and ReCiPe (a damage-based indicator).

Results and discussion

From an analysis of the data, it becomes clear that the environmental burden is not only a function of the base materials (cotton, PET, nylon, acryl, and elastane) but also of the thickness of the yarn (for this research, the range of 50–500 dtex is examined). The authors propose that the environmental burden of spinning, weaving, and knitting is a function of 1/yarn size. The cradle-to-grave analysis from raw material extraction to discarded textile demonstrates that textiles made out of acryl and PET have the least impact on the environment, followed by elastane, nylon, and cotton. The use phase has less relative impact than it is suggested in the classical literature.

Conclusions

The impact of spinning and weaving is relatively high (for yarn thicknesses of less than 100 dtex), and from the environmental point of view, knitting is better than weaving. LCA on textiles can only be accurate when the yarn thickness is specified. In case the functional unit also indicates the fabric per square meter, the density must be known. LCA results of textile products over the whole value chain are case dependent, especially when dyeing and finishing processes and the use phase and end-of-life are included in the analysis. Further LCI data studies on textiles and garments are urgently needed to lower the uncertainties in contemporary LCA of textile materials and products.  相似文献   

15.
In this decade, the demands of energy saving and diverse personal thermoregulation requirements along with the emergence of wearable electronics and smart textiles give rise to the resurgence of personal thermal management (PTM) technologies. PTM, including personal cooling, heating, insulation, and thermoregulation, are far more flexible and extensive than the traditional air/liquid cooling garments for the human body. Concomitantly, many new advanced materials and strategies have emerged in this decade, promoting the thermoregulation performance and the wearing comfort of PTM simultaneously. In this review, an overview is presented of the state‐of‐the‐art and the prospects in this burgeoning field. The emerging materials and strategies of PTM are introduced, and classed by their thermal functions. The concept of infrared‐transparent visible‐opaque fabric (ITVOF) is first highlighted, as it triggers the work on advanced PTM by combining it with radiative cooling, and the corresponding implementations and realizations are subsequently introduced, followed by wearable heaters, flexible thermoelectric devices, and sweat‐management Janus textiles. Finally, critical considerations on the challenges and opportunities of PTM are presented and future directions are identified, including thermally conductive polymers and fibers, physiological/psychological statistical analysis, and smart PTM strategies.  相似文献   

16.
Composite scaffolds for cartilage tissue engineering   总被引:2,自引:0,他引:2  
Moutos FT  Guilak F 《Biorheology》2008,45(3-4):501-512
Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.  相似文献   

17.
Hard fibres     
These fibres, obtained from the leaves of agaves, Manila hemp, New Zealand flax and various bromeliads, are important in the manufacture of cordage and of coarse textiles.  相似文献   

18.
A short literature survey on chemical sterilization with -propiolactone is given. The auto-inactivatio 1 of this compound in aqueous solution appears to be one of its main advantages.Time-kill studies have been carried out with bacterial cells and spores, and with fungal spores. The compatibility of BPL with textiles and plastics was also studied to some extent. It is concluded that heat-sensitive materials can be sterilized with a 1.0% aqueous solution of BPL within one hour at room temperature. The compatibility of BPL with the materials studied does not appear to offer serious problems.  相似文献   

19.
Evolution, properties and applications of spider silk The evolutionary success of spiders (Araneae) is closely linked to the development and multiple purposes of their silks. The fibrous material is used to protect their offspring, for distribution and orientation, and especially for prey catching. About half of the approx. 48,000 known species build webs, the variability of which is considered an example of co-evolution with insects and their habitats. In the course of evolution, adaptation to prey ecology and changes at the molecular level led to high-performance materials such as the silks of the Major Ampullate gland (MA silk), with mechanical toughness surpassing that of most technical materials. The establishment of recombinant production on an industrial scale has enabled the use of biocompatible, wound-healing and bacteriostatic silks as green sustainable biopolymers in a wide range of applications such as cosmetics, biomedicine, special textiles, filter materials, and nanobiotechnology.  相似文献   

20.

Purpose

Silver-enabled textiles use the inherent antimicrobial properties of silver to produce a product with odor reduction capabilities. A touted benefit of these products is the ability to reduce their lifetime environmental impact through reductions in laundering. A comprehensive life cycle assessment is needed to fully understand the potential benefit of reduced laundering, environmental payback period, and potential to shift consumer-laundering behavior.

Methods

Three commercially available silver-enabled polyester fabrics are compared to a conventional fabric using life cycle assessment methodology. Sima Pro software along with the Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI) impact categories are used to model the environmental impact of the four textiles (three with added silver, and one conventional textile) throughout their lifetimes. Environmental payback is used to determine the number of reductions of launderings necessary for environmental benefit to be realized from the inclusion of silver. Current literature on laundering motivations and habits is reviewed to yield insight on whether there is the potential for consumers to launder their textiles less frequently.

Results and discussion

The lifetime environmental impact of the three textiles considered varies as a function of the silver content and environmental impact category. In some impact categories, such as global warming potential, the laundering phase has the greatest environmental impact and thus has the potential for the greatest reduction. In other categories, such as ecotoxicity, the most significant impact is due to the percentage of silver that is released into surface water from the textile. In this case, environmental parity (the point at which the environmental impacts are the same) is not always possible to achieve. A review of the literature suggests that the motivation to launder textiles along with the frequency varies significantly across populations and times in history.

Conclusions

Silver-enabled textiles have the potential to reduce the odors produced by unwashed textiles through bacterial inhibition. In some cases, there is the potential to achieve adequate reductions in laundering to compensate for the increased energy and raw materials needed to produce silver-enabled textile. However, frequency of laundering is largely a cultural norm based on perceived cleanliness and is unlikely to be shifted as a function of textile adoption.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号