首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Oocytes of the toad, Bufo bufo japonicus , at various stages of progesterone-induced maturation were stimulated by pricking or treatment with Ca-ionophore A23187. Upon pricking, oocytes 14 hr after hormone treatment (PHT) underwent sequential activation responses, such as development of an activation potential, cortical granule breakdown (CGBD), and formation of a perivitelline space (PVS), like those of mature oocytes (18 hr PHT). When oocytes were pricked at 14 hr PHT, it took about 10 min for the wave of CGBD to spread over all the oocyte surface, in contrast to the case with mature oocytes in which it took about 150 sec. The rate of spread of CGBD was significantly less in the vegetal hemisphere than in the animal hemisphere in both mature and immature oocytes. Treatment with A23187 (1 μM) for 5 min induced an activation potential, and PVS formation by the oocytes from 10 hr PHT, which was 3–4 hr earlier than the time when these responses could be induced by pricking. Oocytes at 8–9 hr PHT also showed CGBD in response to A23187, but without formation of an activation potential. Several patches of local PVS caused by the non-propagating CGBD were observed in oocytes treated with the ionophore 5–7 hr PHT. When a high concentration (10 μM) of A23187 was employed, CGBD without PVS formation was induced even in oocytes at 0 hr PHT. These results indicate that the responsiveness to a Ca2+ surge that is a prerequisite for both CGBD and genesis of an activation potential is acquired for the repective responses at different stages of oocyte maturation.  相似文献   

2.
Temporal relationships between maturational events and the onset of activation in response to divalent ionophore and to pricking were examined following in vitro exposure of Rana pipiens oocytes to desoxycorticosterone acetate (DOCA). Activation was evaluated on the basis of vitelline envelope elevation and cortical granule breakdown. Ionophore-induced activation was first observed after 18 hr of DOCA incubation, coincident with the time of separation of the vitelline envelope from the oocyte surface and 2–3 hr after breakdown of the germinal vesicle. Activation in response to pricking was not observed until 30 hr of DOCA incubation. Neither ionophore treatment nor pricking resulted in activation of oocytes that had not been incubated with DOCA. These results indicate that oocytes can be activated many hours earlier than previously demonstrated. The time of onset of the capacity for activation appears to be related to germinal vesicle breakdown and vitelline envelope separation.  相似文献   

3.
Fertilization results in cortical granule exocytosis, which is thought to be involved in modifications of the zona pellucida that constitute the zona pellucida block to polyspermy. A previous report demonstrated that a decrease in the number of Lens culinaris agglutinin-staining granules, which are likely to be cortical granules, occurred during in vivo mouse oocyte maturation with arrest at metaphase II, as well as the formation of a cortical granule-free domain in the area of the metaphase II spindle (T. Ducibella, E. Anderson, D.F. Albertini, J. Aalberg, and S. Rangarajan, 1988, Dev. Biol. 130, 184-197). We extend these observations by reporting here that germinal vesicle-intact oocytes matured in vitro to metaphase II in either the absence or the presence of serum develop a cortical granule-free domain and have reduced numbers of cortical granules when compared to germinal vesicle-intact oocytes; these changes are similar to those of oocytes matured in vivo. The reduction in the number of cortical granules requires germinal vesicle breakdown, since it is prevented by dibutyryl cAMP, which inhibits germinal vesicle breakdown in vitro. The ability of oocytes to respond to the calcium ionophore A23187 with a reduction in the number of cortical granules is also associated with meiotic maturation and develops between 7 and 12 hr after initiation of maturation. The maturation-associated reduction in the number of cortical granules is likely to represent cortical granule exocytosis, since this reduction is accompanied by the formation of a cortical granule-free domain and a conversion of ZP2 to ZP2f when the oocytes are matured in vitro in serum-free medium; this zona pellucida modification occurs following fertilization and is thought to be due to cortical granule exocytosis. In contrast, the loss of cortical granules and development of the cortical granule-free domain of oocytes matured in vitro in the presence of serum is not accompanied by the modification of ZP2. The inhibitory effect of serum on the ZP2 modification may afford in vivo a physiological mechanism to prevent a precocious modification of the zona pellucida that could result in a premature block to polyspermy and hence inhibit fertilization.  相似文献   

4.
In vitro fertilization (IVF) is being routinely used in humans and several domestic species, however, limited success has been achieved in the horse. Although immature equine oocytes are capable of completing meiosis in vitro, subsequent fertilization, and embryonic development of those oocytes are questionable. The lack of development of these oocytes could be attributed to an impaired cytoplasmic maturation. In the horse, the study of oocyte cytoplasmic maturation and post-fertilization development has been hindered by the lack of progress in IVF. In mammalian oocytes, migration of cortical granules (CG) has been used as an important criterion to evaluate cytoplasmic maturation. The aim of this study was to describe and quantify the CG distribution of equine oocytes during in vitro meiotic maturation and to assess activation of oocytes with calcium ionophore based upon fluorescein isothiocyanate (FITC)-labeled Lens culinaris agglutinin (LCA) and laser confocal microscopy. The results of this study indicate that CG are distributed throughout the cytoplasm of oocytes at the germinal vesicle (GV) stage (immature). As maturation proceeds, a progressive centripetal migration of CG to the oocyte cortex occurs with the formation of a monolayer adjacent to the plasma membrane starting by the end of a 30 hr incubation period and increasing significantly after 36 hr. After activation, significant reduction in the number of CG was observed (P < 0.001) suggesting that oocytes cultured under the present conditions possess the ability to release CG in response to the elevation of intracellular free calcium.  相似文献   

5.
Electrical Properties of Toad Oocytes During Maturation and Activation   总被引:2,自引:2,他引:0  
The full-grown oocytes of the toad Bufo bufo japonicus , whether in follicular layer or not, had a membrane potential of about -50 mV in De Boer's solution (DB), but underwent a deep hyper-polarization of up to -90 mV when pretreated with Ca, Mg-free EDTA-solution. Regardless of the magnitude of their resting potentials, the defolliculated oocytes exposed to progesterone underwent a gradual depolarization before the germinal vesicle breakdown and retained membrane potential at a level of -10 mV until 18 hr post hormone treatment (PHT), the stage of the second meiotic metaphase. A positive-going activation potential of a magnitude of 70 mV was recorded in the oocytes when pricked at 18 hr PHT as well as in uterine eggs 3–5 min after insemination. A low magnitude of activation potential in response to pricking was recorded in 63% of the oocytes at 13 hr PHT, and premature oocytes exhibiting the activation potential always underwent cortical granule breakdown (CGBD) and perivitelline space formatión. Oocytes where the germinal vesicle had been removed before the hormone treatment exhibited an activation potential and underwent CGBD in response to pricking at 18 hr PHT, whereas those pulse-treated with cycloheximide (10 μg/ml) during the 8–11 hr PHT exhibited neither of these cortical responses. These results indicate that the syntheses of proteins independent of germinal vesicle taking place at 9–11 hr PHT enable the oocytes to undergo cortical responses.  相似文献   

6.
Immature full-grown oocytes of Pleurodeles waltlii contain large amounts of small electron-dense polysaccharidic granules. These granules lack a limiting membrane, and have a dense but heterogeneous matrix and an apparent diameter of 24–36 nm. Their structure, organization and distribution strongly suggest that they are glycogen granules. On the other hand, mature oocytes both after oviposition or 22–24 hr after in vitro progesterone stimulation contain no polysaccharide granules or complexes. During the first 9–10 hr after hormonal stimulation, granules were abundant and present both individually and as large strands occupying most of the space between the organelles. Granules were frequently found packed together and arranged in regularly arrayed stacks within large subcortical ant cortical vacuoles. Between 4 and 6 hr after progesterone addition, oocytes released the contents of vacuoles to the outside. Between about 11 and 14 hr after progesterone addition, oocytes still contained large amounts of polysaccharide complexes, but the vacuoles were empty. From about 15 hr after progesterone treatment until the end of maturation, the complexes progressively disappeared from the cytoplasm, coincident with the detachment of the follicle cell layer from the oocytes and a reduction in the number and size of microvilli.  相似文献   

7.
The chronology of maturation process and cortical reaction development was studied in the Volga sevryuga oocytes. The germinal vesicle breakdown was first noted at 14 tau 0 following the injection of hypophysial suspension to the female and observed in the vast majority of oocytes at 17 tau 0; different phases of the I maturation division were found at 21 to 25 tau 0 and metaphase II at 33 tau 0. The ability to respond by cortical reaction to the activating stimulus (glass needle pricking) was first observed at 17 tau 0, i.e. soon after the germinal vesicle breakdown, but the appearance of the ability for cortical reaction was not connected causatively with the latter process. The cortical reaction in the maturing oocytes (17 to 25 tau 0) is characterized by the following features: in some oocytes the rate of the wave of granule breakdown is much lower than in the mature eggs; in ca. 80% of oocytes with the normal rate of cortical reaction the process of release of the contents of cortical granules in inhibited in the animal pole region and accordingly the contact of cytoplasm with the membranes is preserved in this region for a long time.  相似文献   

8.
Full-grown stage VI Xenopus laevis oocytes (1,200 to 1,300 micron) respond to progesterone stimulation by undergoing a series of physiological and morphological changes that are referred to as meiotic maturation. Oocytes in earlier stages of oogenesis (I through V) do not undergo these changes and remain in prophase arrest when exposed to this steroid. We have found that oocytes ranging from 850 micron (stage IV) to 1,000 micron (stage V) are capable of responding to progesterone under the appropriate conditions. Oocytes greater than or equal to 850 micron in diameter underwent germinal vesicle breakdown (GVBD) after 10-12 hr of exposure to progesterone when ouabain was added to the medium at a concentration greater than 2.5 X 10(-6) M. Under this culture condition, progesterone was now able to induce a 0.3- to 0.4-unit increase in the intracellular pH of stage IV-V oocytes, a 4- to 5-fold increase in 40s ribosomal protein S-6 phosphorylation, and a 2.3-fold increase in their rate of protein synthesis. All of these physiological changes are characteristic of full-grown stage VI oocytes undergoing meiotic maturation. In addition, we have found that oocytes greater than or equal to 750 micron are capable of amplifying maturation promoting factor (MPF) in their cytoplasm leading to GVBD. Therefore, stage IV-V Xenopus oocytes have the potential for undergoing meiotic maturation, but they are blocked at a point in prophase that appears to be alleviated by the combination of progesterone and ouabain.  相似文献   

9.
Induction of maturation in small Xenopus laevis oocytes   总被引:1,自引:0,他引:1  
The competence of Xenopus laevis oocytes in various stages of growth to respond to progesterone treatment was investigated. Full-grown (stage 6) oocytes undergo nuclear membrane dissolution and resume meiosis in response to progesterone exposure, while smaller oocytes (stages 3-5; less than 1100 micron in diameter) do not. The defect which prevents 750- to 1050-micron oocytes from responding to progesterone can be overcome by microinjecting cytoplasm withdrawn from a stage 6 oocyte. Germinal vesicle breakdown in these small oocytes occurs on a timetable similar to that of stage 6 oocytes exposed to progesterone and is accompanied by a twofold increase in protein synthesis as well as the activation of MPF. The results argue that a cytoplasmic factor(s) which probably first appears at late stage 5 is required for progesterone responsiveness. The identity and role of the factor(s) in the development of maturation competence and the regulation of maternal mRNA translation are discussed.  相似文献   

10.
Summary During meiotic maturation, the cortex of oocytes of Xenopus laevis undergoes structural reorganization, visualized in this study by freeze-fracture electron microscopy. In the full-grown but immature oocyte, annulate lamellae are dispersed throughout the subcortex of the egg, 5 to 20 m from the plasma membrane. The annulate lamellae consist of well-organized stacks of membrane with visible pores. Stimulation of meiotic maturation by progesterone leads to disruption of the annulate lamellae and formation of an elaborate cortical endoplasmic reticulum which surrounds the cortical granules and intertwines throughout the cortex of the mature egg. Pore-like structures similar to those previously observed in the subcortical annulate lamellae are observed in the mature cortical endoplasmic reticulum. The cortical endoplasmic reticulum is often in close apposition with the plasma membrane and with membranes of cortical granules, but no junctions are visualized. This study provides further evidence that the cortical endoplasmic reticulum develops during progesterone-stimulated meiotic maturation in vitro, and that the annulate lamellae are precursors to the cortical endoplasmic reticulum.  相似文献   

11.
The relationship between onset of the early cytoplasmic stages of oocyte activation (vitelline membrane separation and elevation) and nuclear meiotic maturation was investigated in starfish oocytes after their exposure to divalent ionophore (A-23187) or sperm. Meiotically mature oocytes, isolated in calcium-free seawater, underwent activation in response to sperm or ionophore as previously reported. Large, immature starfish oocytes, arrested in prophase I of meiosis (germinal vesicle stage), underwent vitelline membrane elevation when treated with divalent ionophore A-23187 or starfish sperm. Histological studies demonstrated that cortical granule breakdown in the oocyte cortex was associated with vitelline membrane elevation after these treatments. Activation of oocytes by sperm occurred only in response to starfish sperm. Sea urchin, sand dollar, surf clam, or marine worm sperm did not induce vitelline membrane elevation of either immature or mature starfish oocytes. Sperm- or ionophore-activated immature oocytes underwent nuclear maturation after addition of the meiosis-inducing hormone, l-methyladenine; however, parthenogenetic development did not occur and embryonic development was markedly inhibited. In contrast to previous studies, the present results indicate that cytoplasmic activation can be initiated before and without hormone induction of the nuclear maturation process. Differentiation of the oocyte cell surface or cortex reactivity therefore appears to occur during oogenesis rather than as a consequence of maturation. The data further support the view that divalent ions mediate certain of the early activation responses initiated by sperm at the time of fertilization and that synchronization of fertilization to the meiotic process in the oocyte is important for the occurrence of normal development.  相似文献   

12.
The structure, number, and distribution of cortical granules in porcine oocytes during maturation induced by human chorionic gonadotrophin (HCG) are reported. The number of granules remained constant for 30 hr following HCG. Thereafter, there was an approximate doubling by 50 hr. At all times examined, a dark and light form were present. Up to 40 hr the latter predominated while at 50 hr there was a marked increase in the number of the former. Movement of cortical granules to the plasma membrane took place between 20 and 30 hr post-HCG. The changes in cortical granules are correlated with the capacity of the oocytes to undergo a block to polyspermy.  相似文献   

13.
When immature oocytes of the starfish, Asterina pectinifera , were treated with calcium-free seawater for 1 hr and then inseminated in normal seawater, they formed several blisters, indicative of polyspermy, and raised fertilization membranes. These oocytes continued to have intact germinal vesicles. Electron microscopic study revealed that the egg surface remained virtually unchanged after the treatment with calcium-free seawater. Upon insemination, however, the cortical granules broke down and the fertilization membrane was formed. These immature oocytes with ferilization membranes underwent maturation (germinal vesicle breakdown) after treatment with 1-methyladenine.
The treatment with calcium-free seawater seems to bring about some physiological change on the surface of immature oocyte, which bestows some attributes of maturation but is insufficient to mature the oocytes completely.  相似文献   

14.
Oocytes of the starfish, Asterina pectinifera , respond differently to calcium ionophore A23187 depending upon their stage of maturation. Oocytes not-treated with 1-methyladenine (1-MA) formed only a partial fertilization envelope (FE) in response to A23187. Those treated with 1-MA formed no FE if the ionophore was introduced to them before germinal vesicle breakdown (GVBD), in contrast with which they did fully elevate the FE if it was introduced after GVBD. Similar stage-dependent results were obtained if the intracellular concentration of calcium was increased by microinjection of calcium-EGTA buffers. In good accordance with the FE formation, a stage-dependent protease release from oocytes by the ionophore was observed.
It is concluded from these results that, in starfish oocytes, their ability to undergo the exocytosis of cortical granules in response to an increase in intracellular calcium greatly changes along the way of maturation.  相似文献   

15.
The fine structure, distribution, and fate of cortical granules in human oocytes cultured in vitro are reported. Follicular maturation in women with blocked Fallopian tubes was induced by clomiphene citrate and human chorionic gonadotropin, and preovulatory eggs were obtained by improved methods of laproscopy and oocyte recovery. These oocytes were then inseminated and cultured in a modified Ham's F10 medium for 3 to 72 hr to assess their fertilizability. Cortical granules were observed in all 17 unfertilized oocytes investigated, which had completed various stages of meiotic maturation. A marked increase in their numbers was observed in oocytes cultured for 3 to 6 hr. There was no evidence of spontaneous cortical granule release in any of the oocytes studied. It is concluded that cortical maturation expressed by proliferation of cortical granules is as significant a criterion as nuclear maturation in assessing maturity and fertilizability of oocytes cultured in vitro. A short sojourn in culture before insemination could improve chances of normal fertilization and embryo development, which has been recently achieved in our laboratory.  相似文献   

16.
Denuded Bufo arenarum oocytes matured in vitro by progesterone treatment exhibited abnormal segmentation due to the penetration of more than one sperm. These oocytes were able to respond to activation stimuli and exhibited the external signs characteristic of activation. However, the prevention of polyspermy was not effective in these oocytes, which exhibited numerous sperm in their cytoplasm. The aim of this work was to analyse the cortical reaction in polyspermic Bufo arenarum oocytes matured in vitro. The result indicate that the cortical reaction of these oocytes seems to occur with a chronological sequence similar to that described for ovoposited oocytes of this species. In addition, when, 1 min after pricking, cortical granule exocytosis occurred, the oocytes became refractory to sperm entry, suggesting that they are able to establish a slow block to polyspermy.  相似文献   

17.
A voltage-gated hydrogen ion-selective conductance has been previously described in the immature oocyte of the urodele amphibian Ambystoma. The present study was prompted by reports that changes in membrane voltage and internal pH, as well as in internal sodium ion concentration, occur during the hormone-induced maturation of oocytes from other amphibians. As activation of membrane currents might mediate changes in internal ion concentrations in addition to altering the membrane voltage, microelectrode recording techniques have been employed to examine changes in membrane conductances which occur during maturation of Ambystoma oocytes. It was observed that during the first 5 hr of maturation the magnitude of the hydrogen ion conductance gradually decreased, and that subsequently there was an increase in the amplitude of a voltage-dependent noninactivating sodium conductance. After 6 to 7 hr, after the loss of the hydrogen conductance and at about the time of germinal vesicle breakdown, the resting potential of the oocyte spontaneously shifted from approximately -10 mV to approximately +30 mV, where it remained until at least 24 hr after the initiation of maturation. This voltage transition was due to the appearance of mechanisms generating inward current in the oocyte membrane; part of this inward current was due to the tonic activation of the sodium conductance. Changes in internal pH and internal sodium ion concentration occurred during maturation, as judged from shifts in the reversal potentials of both hydrogen and sodium currents. A gradual decrease in internal hydrogen ion concentration was observed up until the time of disappearance of the hydrogen conductance (change in internal pH from about 7.15 in immature oocytes to about 7.40 by 3 hr after application of progesterone). This was followed, as sodium conductance increased, by an apparent rise in the internal sodium ion concentration (from about 6 mM to about 17 mM by 10 hr postprogesterone).  相似文献   

18.
We have observed the presence of membrane junctions formed between the plasma membrane and cortical endoplasmic reticulum of mature, unactivated eggs of xenopus laevis. The parallel, paired membranes of the junction are separated by a 10-mn gap within which electron-dense material is present. This material occurs in patches with an average center-to-center distance of approximately 30 nm. These junctions are rare in immature (but fully grown) oocytes (approximately 2 percent of the plasma membrane is associated with junctions) and increase dramatically during progesterone-induced maturation. Junctions in the mature, unactivated egg are two to three times more abundant in the animal hemisphere (25-30 percent of the plasma membrane associated with junction) as compared with the vegetal hemisphere (10-15 percent). Junction density decreases rapidly to values characteristic of immature oocytes in response to egg activation. The plasma membrane-ER junctions of xenopus eggs are strikingly similar in structure to membrane junctions in muscle cells thought to be essential in the triggering of intracellular calcium release from the sarcoplasmic reticulum. In addition, the junctions’ distinctive, animal-vegetal polarity of distribution, their dramatic appearance during maturation, and their disapperance during activation are correlated with previously documented patterns of calcium-mediated events in anuran eggs. We discuss several lines of evidence supporting the hypothesis that these junctions in xenopus eggs are sites that transduce extracellular events into intracellular calcium release during fertilization and activation of development.  相似文献   

19.
Cows and heifers were induced to superovulate by treatment with PMSG or FSH. The ultrastructural features of the oocytes were related to the time of the LH peak and the progesterone/oestradiol-17 beta ratios in the follicular fluid. At 0-2 h after the LH peak the perivitelline space developed; at 9-12 h there was disconnection of the junctions between cumulus cell projections and oolemma, and the concomitant breakdown of the oocyte nucleus; at approximately 15 h there were spatial rearrangements in the ooplasm of (a) mitochondrial clusters from a peripheral to an even distribution and (b) vesicles from an even distribution to a more central location; at approximately 19 h there was abstriction of the first polar body with dislocation of mitochondrial clusters and vesicles towards the site of polar body formation; at 21-22 h there was migration of cortical granules to solitary positions along the oolemma and decrease in the sizes of Golgi complexes and, on some occasions, the smooth endoplasmic reticulum. These ultrastructural changes were accompanied by an increase in progesterone/oestradiol ratios in the follicular fluids. It is concluded that preovulatory oocyte maturation in gonadotrophin-stimulated cattle comprises nuclear as well as cytoplasmic changes accompanied by steroidogenic changes in the follicle, each of which are closely related to the time of the LH peak. However, some variation existed between animals, between follicular and oocyte maturation and even within oocytes between nuclear and cytoplasmic maturation.  相似文献   

20.
Morphological and biochemical changes indicative of cytoplasmic maturation in relation to nuclear maturation progression and early embryo developmental potential was studied. Fluorescently labeled microfilaments and cortical granules were visualized by using laser scanning confocal microscopy. The mitogen-activated protein (MAP) kinase phosphorylation and cyclin B1 levels were revealed by Western blot. With the maturation of oocytes, cortical granules and microfilaments were localized at the cell cortex. A cortical granule-free domain (CGFD) and an actin-thickening area were observed over both the MII spindle of a mature oocyte and chromosomes of a nocodazole-treated oocyte, suggesting that chromosomes, but not the spindle, determined the localization of CGFD and actin-thickening area. In oocytes that are incompetent to resume meiosis, as indicated by the failure of germinal vesicle breakdown (GVBD), peripheral localization of cortical granules and microfilaments, phosphorylation of MAP kinase and synthesis of cyclin B1 did not occur after 44 hr in vitro. These cytoplasmic changes were also blocked when GVBD of meiotically competent oocytes was inhibited by cycloheximide. Culture of oocytes in a chemically defined medium showed that biological factors such as gonadotropins, cumulus cells and follicle size affected both nuclear and cytoplasmic maturation as well as embryo developmental potential. Absence of gonadotropins or removal of cumulus cells alone did not significantly influence GVBD or cyclin B1 levels, but decreased the final maturation and developmental ability of oocytes. A combination of gonadotropin absence and cumulus removal decreased GVBD, MAP kinase phosphorylation and embryo development. A high proportion of oocytes derived from small follicles were able to resume meiosis, synthesize cyclin B(1), phosphorylate MAP kinase and translocate CGs, but their maturation and embryo developmental ability were limited. Removal of cumulus cells from small follicle-derived oocytes severely affected their ability to undergo cytoplasmic and nuclear maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号