首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ribosomal RNA genes of Drosophila mitochondrial DNA.   总被引:12,自引:3,他引:9       下载免费PDF全文
The nucleotide sequence of a segment of the mtDNA molecule of Drosophila yakuba which contains the A+T-rich region and the small and large rRNA genes separated by the tRNAval gene has been determined. The 5' end of the small rRNA gene was located by S1 protection analysis. In contrast to mammalian mtDNA, a tRNA gene was not found at the 5' end of the D. yakuba small rRNA gene. The small and large rRNA genes are 20.7% and 16.7% G+C and contain only 789 and 1326 nucleotides. The 5' regions of the small rRNA gene (371 nucleotides) and of the large rRNA gene (643 nucleotides) are extremely low in G+C (14.6% and 9.5%, respectively) and convincing sequence homologies between these regions and the corresponding regions of mouse mt-rRNA genes were found only for a few short segments. Nevertheless, the entire lengths of both of the D. yakuba mt-rRNA genes can be folded into secondary structures which are remarkably similar to secondary structures proposed for the rRNAs of mouse mtDNA. The replication origin-containing, A+T-rich region (1077 nucleotides; 92.8% A+T), which lies between the tRNAile gene and the small rRNA gene, lacks open reading frames greater than 123 nucleotides.  相似文献   

2.
昆虫基因组及其大小   总被引:5,自引:0,他引:5  
薛建  程家安  张传溪 《昆虫学报》2009,52(8):901-906
昆虫基因组大小是由于基因组各种重复序列在扩增、缺失和分化过程中所致的数量差异造成的。这些差异使得昆虫不同类群间、种间和同种的不同种群间表现出基因组大小的不同。目前有59种昆虫已经列入基因组测序计划, 其中6种昆虫(黑腹果蝇Drosophila melanogaster、冈比亚按蚊Anopheles gambiae、家蚕Bombyx mori、意大利蜜蜂Apis mellifera、埃及伊蚊Aedes aegypti和赤拟谷盗Tribolium castaneum)的全基因组序列已经报道。有725种昆虫的基因组大小得到了估计, 大小在0.09~16.93 pg (88~16 558 Mb)之间。本文还介绍了昆虫基因组大小的估计方法, 讨论了昆虫基因组大小的变化及其意义。  相似文献   

3.
A genome-wide analysis of innate immunity-related genes and gene families was conducted using the silkworm, Bombyx mori. We identified orthologs for a large number of genes involved in insect immunity that have been reported from Drosophila melanogaster (Diptera), Anopheles gambiae (Diptera), Apis mellifera (Hymenoptera) and Tribolium castaneum (Coleoptera). B. mori has a unique recognition gene and antimicrobial peptide genes that are not present in the Drosophila, Anopheles, Apis and Tribolium genomes, suggesting a lineage-specific gene evolution for lepidopteran insects. The comparative analysis of the insect immune repertoires indicated a dynamic and flexible gene expansion in recognition, modulation and effector mechanisms due to different selection pressures. Differential gene regulation by different bacterial species was found in PGRP and Serpin genes, suggesting that Bombyx has a highly selective gene regulation system depending on bacterial species.  相似文献   

4.
5.
6.
7.
8.
This study reports the molecular characterization of the mtDNA control region (called the A+T-rich region in insects) of five dipteran species which cause myiasis: Cochliomyia hominivorax Coquerel, Cochliomyia macellaria Fabricius, Chrysomya megacephala Fabricius, Lucilia eximia Wiedemann (Diptera: Calliphoridae) and Dermatobia hominis Linnaeus Jr (Diptera: Oestridae). The control region in these species varies in length from 1000 to 1600 bp. Two structural domains with specific evolutionary patterns were identified. These were (1) conserved sequence blocks containing primary sequence motifs, including dinucleotide pyrimidine-purine series and long T-stretches, located at the 5' end adjacent to the tRNA(Ile) gene and (2) a hypervariable domain at the 3' end characterized by increased nucleotide divergence and size variation. A high frequency of A<-->T transversions at nucleotide substitution level indicated directional mutation pressure. The phylogenetic usefulness of the insect control region is discussed.  相似文献   

9.
10.
11.
Mitochondrial DNA (mtDNA) obtained from ovaries of Drosophila simulans, D. mauritiana, D. takahashii, D. yakuba and D. virilis was examined by electron microscopy. From a consideration of the structural properties of replicative intermediates, it was concluded that in mtDNA molecules of each species, synthesis on one strand can be up to 97% complete before synthesis on the complementary strand is initiated. MtDNA molecules of each species contain a single A+T-rich region which shows species-specific size variation from 1.0 kb (D. virilis) to 4.8 kb (D. simulans), and maps at the same position in all molecules relative to three common EcoRI sites. The structural properties of complex forms, interpreted as having originated from replicative intermediates, and produced by either partial denaturation or EcoRI digestion, are consistent with the hypothesis that replication is initiated within the A+T-rich region and proceeds unidirectionally around the molecule towards the nearest common EcoRI site. The replication origin is located near the center of the A+T-rich region in D. simulans and D. mauritiana, but lies closer to that end of the A+T-rich region which is distal to the nearest common EcoRI site in D. takahashii, D. yakuba and D. virilis.  相似文献   

12.
Bombyx mori and Bombyx mandarina are morphologically and physiologically similar. In this study, we compared the nucleotide variations in the complete mitochondrial (mt) genomes between the domesticated silkmoth, B. mori, and its wild ancestors, Chinese B. mandarina (ChBm) and Japanese B. mandarina (JaBm). The sequence divergence and transition mutation ratio between B. mori and ChBm are significantly smaller than those observed between B. mori and JaBm. The preference of transition by DNA strands between B. mori and ChBm is consistent with that between B. mori and JaBm, however, the regional variation in nucleotide substitution rate shows a different feature. These results suggest that the ChBm mt genome is not undergoing the same evolutionary process as JaBm, providing evidence for selection on mtDNA. Moreover, investigation of the nucleotide sequence divergence in the A+T-rich region of Bombyx mt genomes also provides evidence for the assumption that the A+T-rich region might not be the fastest evolving region of the mtDNA of insects.  相似文献   

13.
We determined the complete nucleotide sequence of the A+T-rich region of the maII type of mtDNA in D. mauritiana. The nucleotide sequence was found to contain 3,206 bp. Three types of conserved element, i.e., type I element, type II element, and T-stretch, were included in this sequence, as reported for D. melanogaster. Comparison between the two species revealed that the type I elements were less conserved than the type II elements. However, each of these type I elements contained a G-stretch within a loop of a putative stem-loop-forming sequence, which has also been observed in D. melanogaster. Moreover, in both type I and type II repeat arrays, the elements closest to the T-stretch diverged the most, due to nucleotide substitution and/or the insertion of short repeats. Sequence comparison of the two complete sequences of the A+T-rich region of D. melanogaster and the maII type of D. mauritiana, as well as comparison of partial sequences in other types of mtDNA within the melanogaster complex, suggested that the A+T-rich region in this complex has been maintained by concerted evolution after the duplication of two types of element, i.e., type I and type II.  相似文献   

14.
15.
Mitochondrial DNA (mtDNA) molecules from Drosophila mauritiana, D. melanogaster, and D. simulans contain a single adenine + thymine (A+T)-rich region, which is similarly located in all molecules, but varies in size among these species. Using agarose gel electrophoresis and electron microscopy, a difference in occurrence of one EcoRI site, and a difference in size (approximately 0.7 kb) of the A+T-rich regions was found between mtDNA molecules of flies of two female lines of D. mauritiana. In heteroduplexes constructed between these two kinds of mtDNA molecules, two or three regions of strand separation, each comprising single strands of unequal length, were apparent near the center of the A+T-rich region. Using the structural differences between D. mauritiana mtDNA molecules it was demonstrated the mtDNA of this species is maternally inherited. Differences in length of A+T-rich regions were also found between mtDNA molecules of two geographically separated strains of D. melanogaster, and between mtDNA molecules of two geographically separated strains of D. simulans. However, in both cases, in heteroduplexes constructed between mtDNA molecules of different strains of one species, the A+T-rich regions appeared completely paired.  相似文献   

16.
世界各地发行了许多有实验昆虫的邮票,其种类超过20种,如黑腹果蝇Drosophila melanogaster、吸血蝽Rhodnius prolixus、家蚕Bombyx mori和蜜蜂Apis mellifera,等等。文章对这些邮票上的昆虫作了介绍。  相似文献   

17.
18.
19.
In solid tissues of vertebrates, initiation of mitochondrial DNA replication encompasses a broad zone downstream of the major noncoding region (NCR). In contrast, analysis with two-dimensional agarose gel electrophoresis of mitochondrial DNA replication intermediates in cultured human cells revealed initiation concentrated in the NCR. Mapping of prominent free 5' ends on the heavy strand of mitochondrial DNA identified two clusters of potential start sites. One mapped to the previously assigned origin of strand-asynchronous replication (O(H)); the other lay several hundred nucleotides away from O(H), toward the other end of the NCR. The latter cluster is proposed to be the major site of bidirectional replication initiation on the basis of the following: its prominence is enhanced in cells amplifying mitochondrial DNA after experimentally induced mitochondrial DNA depletion; free 5' ends are found in corresponding positions on the opposite strand; it is transient in nature; and it is associated with bubble arcs.  相似文献   

20.
Molecular identification of the first SIFamide receptor   总被引:1,自引:0,他引:1  
SIFamide is the short name and also the C terminus of the Drosophila neuropeptide AYRKPPFNGSIFamide. SIFamide has been isolated or predicted from various insects and crustaceans, and appears to be extremely well conserved among these arthropods. However, the function of this neuropeptide is still enigmatic. Here, we have identified the Drosophila gene (CG10823) coding for the SIFamide receptor. When expressed in Chinese hamster ovary cells, the receptor is only activated by Drosophila SIFamide (EC(50), 2x10(-8)M) and not by a library of 32 other insect neuropeptides and eight biogenic amines. Database searches revealed SIFamide receptor orthologues in the genomes from the malaria mosquito Anopheles gambiae, the silkworm Bombyx mori, the red flour beetle Tribolium castaneum, and the honey bee Apis mellifera. An alignment of the five insect SIFamide or SIFamide-like receptors showed, again, an impressive sequence conservation (67-77% amino acid sequence identities between the seven-transmembrane areas; 82-87% sequence similarities). The identification of well-conserved SIFamide receptor orthologues in all other insects with a sequenced genome, suggests that the SIFamide/receptor couple must have an essential function in arthropods. This paper is the first report on the identification of a SIFamide receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号