首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The midgut proteases of the Bacillus thuringiensis resistant and susceptible populations of the diamondback moth, Plutella xylostella L. were characterized by using protease specific substrates and inhibitors. The midgut contained trypsin-like proteases of molecular weights of 97, 32, 29.5, 27.5, and 25 kDa. Of these five proteases, 29.5 kDa trypsin-like protease was the most predominant in activation of protoxins of Cry1Aa and Cry1Ab. The activation of Cry1Ab protoxin by midgut protease was fast (T(1/2) of 23-24 min) even at a protoxin:protease ratio of 250:1. The protoxin activation appeared to be multi-step process, and at least seven intermediates were observed before formation of a stable toxin of about 57.4 kDa from protoxin of about 133 kDa. Activation of Cry1Aa was faster than that of Cry1Ab on incubation of protoxins with midgut proteases and bovine trypsin. The protoxin and toxin forms of Cry proteins did not differ in toxicity towards larvae of P. xylostella. The differences in susceptibility of two populations to B. thuringiensis Cry1Ab were not due to midgut proteolytic activity. Further, the proteolytic patterns of Cry1A protoxins were similar in the resistant as well as susceptible populations of P. xylostella.  相似文献   

2.
Two strains of the diamondback moth, Plutella xylostella (L.), were selected using Cry1C protoxin and transgenic broccoli plants expressing a Cry1C toxin of Bacillus thuringiensis (Bt). Both strains were resistant to Cry1C but had different cross-resistance patterns. We used 12 Bt protoxins for cross-resistance tests, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Bb, Cry1C, Cry1D, Cry1E, Cry1F, Cry1J, Cry2Ab, Cry9Aa, and Cry9C. Compared with the unselected sister strain (BCS), the resistance ratio (BR) of one strain (BCS-Cry1C-1) to the Cry1C protoxin was 1,090-fold with high level of cross-resistance to Cry1Aa, Cry1Ab, Cry1Ac, Cry1F, and Cry1J (RR > 390-fold). The cross-resistance to Cry1A, Cry1F, and Cry1J in this strain was probably related to the Cry1A resistance gene(s) that came from the initial field population and was caused by intensive sprayings of Bt products containing Cry1A protoxins. The neonates of this strain can survive on transgenic broccoli plants expressing either Cry1Ac or Cry1C toxins. The other strain (BCS-Cry1C-2) was highly resistant to Cry1C but not cross-resistant to other Bt protoxins. The neonates of this strain can survive on transgenic broccoli expressing Cry1C toxin but not Cry1Ac toxin. The gene(s) conferring resistance to Cry1C segregates independently from Cry1Ac resistance in these strains. The toxicity of Cry1E and Cry2Ab protoxins was low to all of the three strains. The overall progress of all work has resulted in a unique model system to test the stacked genes strategy for resistance management of Bt transgenic crops.  相似文献   

3.
Solubilized protoxins of nine Cry1 and one hybrid Cry1 delta-endotoxin from Bacillus thuringiensis were tested for their activity against larvae of the codling moth (Cydia pomonella L). Cry1Da was the most toxic, followed by Cry1Ab, Cry1Ba, and Cry1Ac, while Cry1Aa, Cry1Fa, Cry1Ia, and SN19 were still less active. Cry1Ca and Cry1Cb showed no activity. In vitro trypsin activation increased activity of all eight active delta-endotoxins, and dramatically enhanced toxicity of hybrid SN19, Cry1Aa, Cry1Ac, and Cry1Fa. The differences between toxicity of proteins before and after trypsin digestion suggests that proteolytic activation in the C. pomonella digestive tract plays a critical role for the activity of Cry proteins against this insect.  相似文献   

4.
Transgenic rice to control stem borer damage is under development in China. To assess the potential of Bacillus thuringiensis (Bt) transgenes in stem borer control, the toxicity of five Bt protoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1Ca) against two rice stem borers, Sesamia inferens (pink stem borer) and Chilo suppressalis (striped stem borer), was evaluated in the laboratory by feeding neonate larvae on artificial diets containing Bt protoxins. The results indicated that Cry1Ca exhibited the highest level of toxicity to both stem borers, with an LC50 of 0.24 and 0.30 μg/g for C. suppressalis and S. inferens, respectively. However, S. inferens was 4-fold lower in susceptibility to Cry1Aa, and 6- and 47-fold less susceptible to Cry1Ab and Cry1Ba, respectively, compared to C. suppressalis. To evaluate interactions among Bt protoxins in stem borer larvae, toxicity assays were performed with mixtures of Cry1Aa/Cry1Ab, Cry1Aa/Cry1Ca, Cry1Ac/Cry1Ca, Cry1Ac/Cry1Ba, Cry1Ab/Cry1Ac, Cry1Ab/Cry1Ba, and Cry1Ab/Cry1Ca at 1:1 (w/w) ratios. All protoxin mixtures demonstrated significant synergistic toxicity activity against C. suppressalis, with values of 1.6- to 11-fold higher toxicity than the theoretical additive effect. Surprisingly, all but one of the Bt protoxin mixtures were antagonistic in toxicity to S. inferens. In mortality-time response experiments, S. inferens demonstrated increased tolerance to Cry1Ab and Cry1Ac compared to C. suppressalis when treated with low or high protoxin concentrations. The data indicate the utility of Cry1Ca protoxin and a Cry1Ac/Cry1Ca mixture to control both stem borer populations.  相似文献   

5.
Dipel-resistant and -susceptible strains of Ostrinia nubilalis (Hübner) were evaluated for larval mortality and growth inhibition when fed diets containing individual Bacillus thuringiensis protoxins. Resistance ratios for four of the protoxins in Dipel (Cry1Aa, Cry1Ab, Cry1Ac, and Cry2Aa) were 170-, 205-, 524-, and > 640-fold, respectively, considerably higher than the 47-fold resistance to Dipel. The Dipel-resistant strain was 36-fold resistant to Cry1Ba, a protoxin not present in Dipel. Another non-Dipel protoxin, Cry1Ca, did not cause significant mortality for either resistant or susceptible larvae with doses as high as 1.0 mg/ml. In an evaluation of larval growth inhibition, resistance to Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Ba was significant at concentrations of 0.054 and 0.162 microg/ml. However, growth inhibition with Cry2Aa was not significant at either dose. These data provide information on the spectrum of resistance and cross-resistance to individual Cry protoxins in this strain.  相似文献   

6.
Insecticidal crystal proteins from Bacillus thuringiensis in sprays and transgenic crops are extremely useful for environmentally sound pest management, but their long-term efficacy is threatened by evolution of resistance by target pests. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to B. thuringiensis in open-field populations. The only known mechanism of resistance to B. thuringiensis in the diamondback moth is reduced binding of toxin to midgut binding sites. In the present work we analyzed competitive binding of B. thuringiensis toxins Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F to brush border membrane vesicles from larval midguts in a susceptible strain and in resistant strains from the Philippines, Hawaii, and Pennsylvania. Based on the results, we propose a model for binding of B. thuringiensis crystal proteins in susceptible larvae with two binding sites for Cry1Aa, one of which is shared with Cry1Ab, Cry1Ac, and Cry1F. Our results show that the common binding site is altered in each of the three resistant strains. In the strain from the Philippines, the alteration reduced binding of Cry1Ab but did not affect binding of the other crystal proteins. In the resistant strains from Hawaii and Pennsylvania, the alteration affected binding of Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F. Previously reported evidence that a single mutation can confer resistance to Cry1Ab, Cry1Ac, and Cry1F corresponds to expectations based on the binding model. However, the following two other observations do not: the mutation in the Philippines strain affected binding of only Cry1Ab, and one mutation was sufficient for resistance to Cry1Aa. The imperfect correspondence between the model and observations suggests that reduced binding is not the only mechanism of resistance in the diamondback moth and that some, but not all, patterns of resistance and cross-resistance can be predicted correctly from the results of competitive binding analyses of susceptible strains.  相似文献   

7.
We studied mechanisms of resistance to Bacillus thuringiensis insecticidal crystal protein Cry1C in the diamondback moth, Plutella xylostella (L.). Binding assays with midgut brush border membrane vesicles prepared from whole larvae showed no significant difference between resistant and susceptible strains in binding of radioactively-labeled Cry1C. These results indicate that reduced binding of Cry1C to midgut membrane target sites did not cause resistance to Cry1C. Thus, the mechanism of resistance to Cry1C differs from that observed in several previously reported cases of resistance to Cry1A toxins in diamondback moth. We tested Cry1C toxin and Cry1C crystalline protoxin against resistant and susceptible larvae using leaf disk bioassays. After adjusting for the size difference between Cry1C toxin and protoxin, we found that with resistant larvae, toxin was significantly more toxic than protoxin. In contrast, with susceptible larvae, no significant difference in toxicity occurred between Cry1C toxin and protoxin. The resistance ratios for Cry1C were 19 for toxin and 48 for protoxin. These results suggest that reduced conversion of Cry1C protoxin to toxin is a minor mechanism of resistance to Cry1C. Because neither reduced binding nor reduced conversion of protoxin to toxin appear to be major mechanisms, one or more other mechanisms are important in diamondback moth resistance to Cry1C.  相似文献   

8.
Assessment of protoxin composition in Bacillus thuringiensis parasporal crystals is principally hampered by the fact that protoxins in a single strain usually possess high sequence homology. Therefore, new strategies towards the identification of protoxins have been developed. Here, we established a powerful method through embedding solubilized protoxins in a polyacrylamide gel block coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of in-gel-generated peptides for protoxin identification. Our model study revealed that four protoxins (Cry1Aa, Cry1Ab, Cry1Ac and Cry2Aa) and six protoxins (Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, Cyt1Aa, and Cyt2Ba) could be rapidly identified from B. thuringiensis subsp. kurstaki HD1 and subsp. israelensis 4Q2-72, respectively. The experimental results indicated that our method is a straightforward tool for analyzing protoxin expression profile in B. thuringiensis strains. Given its technical simplicity and sensitivity, our method might facilitate the present screening program for B. thuringiensis strains with new insecticidal properties. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Zujiao Fu and Yunjun Sun contributed equally to this work.  相似文献   

9.
Insecticidal crystal proteins from Bacillus thuringiensis in sprays and transgenic crops are extremely useful for environmentally sound pest management, but their long-term efficacy is threatened by evolution of resistance by target pests. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to B. thuringiensis in open-field populations. The only known mechanism of resistance to B. thuringiensis in the diamondback moth is reduced binding of toxin to midgut binding sites. In the present work we analyzed competitive binding of B. thuringiensis toxins Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F to brush border membrane vesicles from larval midguts in a susceptible strain and in resistant strains from the Philippines, Hawaii, and Pennsylvania. Based on the results, we propose a model for binding of B. thuringiensis crystal proteins in susceptible larvae with two binding sites for Cry1Aa, one of which is shared with Cry1Ab, Cry1Ac, and Cry1F. Our results show that the common binding site is altered in each of the three resistant strains. In the strain from the Philippines, the alteration reduced binding of Cry1Ab but did not affect binding of the other crystal proteins. In the resistant strains from Hawaii and Pennsylvania, the alteration affected binding of Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F. Previously reported evidence that a single mutation can confer resistance to Cry1Ab, Cry1Ac, and Cry1F corresponds to expectations based on the binding model. However, the following two other observations do not: the mutation in the Philippines strain affected binding of only Cry1Ab, and one mutation was sufficient for resistance to Cry1Aa. The imperfect correspondence between the model and observations suggests that reduced binding is not the only mechanism of resistance in the diamondback moth and that some, but not all, patterns of resistance and cross-resistance can be predicted correctly from the results of competitive binding analyses of susceptible strains.  相似文献   

10.
The influence of Bacillus thuringiensis subsp. kurstaki HD-1 spores upon the toxicity of purified Cry1Ab and Cry1C crystal proteins toward susceptible and BT-resistant Indianmeal moth (IMM, Plodia interpunctella) larvae was investigated. With susceptible larvae, HD-1 spores were toxic in the absence of crystal protein and highly synergistic (approximately 35- to 50-fold) with either Cry1Ab or Cry1C protein. With BT-resistant IMM larvae, HD-1 spores were synergistic with Cry1Ab and Cry1C protein in all three resistant strains examined. Synergism was highest (approximately 25- to 44-fold) in insects with primary resistance toward Cry1C (IMM larvae with resistance to B. thuringiensis subsp. aizawai or entomocidus). However, HD-1 spores also synergized either Cry1Ab or Cry1C toxicity toward larvae resistant to B. thuringiensis subsp. kurstaki at a lower level (approximately five- to sixfold). With susceptible larvae, the presence of spores reduced the time of death when combined with each of the purified Cry proteins. Without spores, the speed of intoxication and eventual death for larvae treated with Cry1C and Cry1Ab proteins was much slower than for the HD-1 preparation containing both spores and crystals together. Neither spores nor toxin dose affected the mean time of death of resistant larvae treated with either Cry1Ab or Cry1C toxins. Both Cry1Ab and Cry1C toxins appeared to reduce feeding and consequently toxin consumption. Received: 1 December 1995 / Accepted: 3 January 1996  相似文献   

11.
The susceptibility of larvae of the diamondback moth, Plutella xylostella Linnaeus to purified crystal proteins and spore-crystal preparations of Bacillus thuringiensis was investigated for 13 populations from seven states in India. The LC50 (microg ml(-1), 48 h) values of Cry proteins for different populations of P. xylostella ranged from 0.14-3.74 (Cry1Aa), 0.007-1.25 (Cry1Ab), 0.18-2.47 (Cry1Ac) and 0.12-3.0 (Cry1C). The LC50 (mg (ai) l(-1), 48 h) of spore-crystal preparations ranged from 0.02-0.98 (HD-1) and 0.06-2.14 (HD-73). Significantly higher LC50 values for all tested toxins and strains were obtained with populations collected from Iruttupallam and Ottanchathiram in the southern state of Tamil Nadu, whereas some of the populations collected from the northern part of India were more susceptible than the susceptible IARI 17-65 population. The high levels of resistance in the Iruttupallam and Ottanchathiram populations to Cry1Ab suggested selection pressure by Cry1Ab, which is the predominant toxin in B. thuringiensis formulations used in India. Cry1Ab was found to be more toxic than the other toxins. The population from Iruttupallam showed increased resistance following selection with Cry1Ab in the laboratory (LC50 from 1.25 to 4.31 microg ml(-1) over two generations) and also showed cross resistance to CrylAa and CrylAc. The resistance to Biobit in the field population from Iruttupallam declined slowly; requiring c. 33 generations for an overall 10-fold decline in LC50 when the insects were reared in the laboratory without exposure to B. thuringensis.  相似文献   

12.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices 1 and 2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the 1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.  相似文献   

13.
We tested toxins of Bacillus thuringiensis against larvae from susceptible, Cry1C-resistant, and Cry1A-resistant strains of diamondback moth (Plutella xylostella). The Cry1C-resistant strain, which was derived from a field population that had evolved resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai, was selected repeatedly with Cry1C in the laboratory. The Cry1C-resistant strain had strong cross-resistance to Cry1Ab, Cry1Ac, and Cry1F, low to moderate cross-resistance to Cry1Aa and Cry9Ca, and no cross-resistance to Cry1Bb, Cry1Ja, and Cry2A. Resistance to Cry1C declined when selection was relaxed. Together with previously reported data, the new data on the cross-resistance of a Cry1C-resistant strain reported here suggest that resistance to Cry1A and Cry1C toxins confers little or no cross-resistance to Cry1Bb, Cry2Aa, or Cry9Ca. Therefore, these toxins might be useful in rotations or combinations with Cry1A and Cry1C toxins. Cry9Ca was much more potent than Cry1Bb or Cry2Aa and thus might be especially useful against diamondback moth.  相似文献   

14.
Crystal proteins from Bacillus thuringiensis subsp. thompsoni strain HnC are active against the codling moth, Cydia pomonella, a major pest of orchards. Inclusion bodies purified from strain HnC displayed an LC50 of 3.34 × 10−3μg/μl. HnC-purified crystals were tenfold more active than Cry2Aa and Cry1Aa toxins, and 100-fold more toxic than Cry1Ab. The 34-kDa and 40-kDa proteins contained in HnC inclusion bodies were shown to act synergistically. The toxicity of crystal proteins produced by the recombinant B. thuringiensis strain BT-OP expressing the full-length native operon was about tenfold higher than that of the 34-kDa protein. When the gene encoding the non-insecticidal 40-kDa protein, which is not active, was introduced into the recombinant strain producing only the 34-kDa protein, the toxicity was raised tenfold and was similar to that of the strain BT-OP. Received: 25 August 1999 / Accepted: 5 October 1999  相似文献   

15.
Toxicity tests were performed to find among Cry1 and Cry2 Bacillus thuringiensis crystal proteins those with high activity against the cabbage looper. Tests were performed with neonate larvae on surface-contaminated artificial diet. The crystal proteins found to be toxic were, from higher to lower toxicity: Cry1Ac, Cry1Ab, Cry1C, Cry2Aa, Cry1J, and Cry1F (LC50 of 1.14.1, 3.4-4.4, 12, 34, 87, and 250 ng/cm2, respectively). Cry1B, Cry1D, and Cry1E can be considered nontoxic (LC50 higher than 2500 ng/cm2). Cry1Aa was moderately toxic to nontoxic, depending on the source (LC50 of 420 ng/cm2 from PGS and 8100 ng/cm2 from Ecogen). In vitro binding assays with trypsin-activated 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac crystal proteins and brush border membrane vesicles from midgut larvae showed a direct correlation between toxicity and binding affinity. Heterologous competition experiments indicated that Cry1Aa and Cry1F bind, though only at very high concentrations, to the Cry1Ab/Cry1Ac shared high-affinity binding site.  相似文献   

16.
The toxicity of seven Bacillus thuringiensis Cry protoxins was tested against neonate larvae of Epinotia aporema, a major soybean pest in Argentina and South America. The most active protoxins were Cry1Ab and Cry1Ac, with LC50 values of 0.55 and 1.39 microg/ml, respectively. Cry1Aa, Cry1Ba, Cry1Ca, and Cry9Ca protoxins were equally toxic with LC50 values about 4 microg/ml, whereas Cry1Da was not toxic. The synergistic activity of different protoxin-mixtures was also analyzed, no synergistic effect between the Cry proteins was observed, with the exception of the poorly toxic Cry1Ba/Cry1Da mixture that was slightly synergistic. The binding capacity of individual Cry1 and Cry9Ca toxins to brush border membranes of E. aporema was also determined. The non-toxic Cry1Da toxin was the only toxin unable to bind to E. aporema membranes. In addition the heterologous competition experiments showed that Cry1Ab and Cry1Ac toxins share a common binding site. Based on these data, we propose that Cry1Ab and Cry1Ac toxins could be used in the biological control of E. aporema.  相似文献   

17.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices α1 and α2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the α1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.  相似文献   

18.
A population (SERD3) of the diamondback moth (Plutella xylostella L.) with field-evolved resistance to Bacillus thuringiensis subsp. kurstaki HD-1 (Dipel) and B. thuringiensis subsp. aizawai (Florbac) was collected. Laboratory-based selection of two subpopulations of SERD3 with B. thuringiensis subsp. kurstaki (Btk-Sel) or B. thuringiensis subsp. aizawai (Bta-Sel) increased resistance to the selecting agent with little apparent cross-resistance. This result suggested the presence of independent resistance mechanisms. Reversal of resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai was observed in the unselected SERD3 subpopulation. Binding to midgut brush border membrane vesicles was examined for insecticidal crystal proteins specific to B. thuringiensis subsp. kurstaki (Cry1Ac), B. thuringiensis subsp. aizawai (Cry1Ca), or both (Cry1Aa and Cry1Ab). In the unselected SERD3 subpopulation (ca. 50- and 30-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai), specific binding of Cry1Aa, Cry1Ac, and Cry1Ca was similar to that for a susceptible population (ROTH), but binding of Cry1Ab was minimal. The Btk-Sel (ca. 600-and 60-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) and Bta-Sel (ca. 80-and 300-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) subpopulations also showed reduced binding to Cry1Ab. Binding of Cry1Ca was not affected in the Bta-Sel subpopulation. The results suggest that reduced binding of Cry1Ab can partly explain resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. However, the binding of Cry1Aa, Cry1Ac, and Cry1Ca and the lack of cross-resistance between the Btk-Sel and Bta-Sel subpopulations also suggest that additional resistance mechanisms are present.  相似文献   

19.
We tested toxins of Bacillus thuringiensis against larvae from susceptible, Cry1C-resistant, and Cry1A-resistant strains of diamondback moth (Plutella xylostella). The Cry1C-resistant strain, which was derived from a field population that had evolved resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai, was selected repeatedly with Cry1C in the laboratory. The Cry1C-resistant strain had strong cross-resistance to Cry1Ab, Cry1Ac, and Cry1F, low to moderate cross-resistance to Cry1Aa and Cry9Ca, and no cross-resistance to Cry1Bb, Cry1Ja, and Cry2A. Resistance to Cry1C declined when selection was relaxed. Together with previously reported data, the new data on the cross-resistance of a Cry1C-resistant strain reported here suggest that resistance to Cry1A and Cry1C toxins confers little or no cross-resistance to Cry1Bb, Cry2Aa, or Cry9Ca. Therefore, these toxins might be useful in rotations or combinations with Cry1A and Cry1C toxins. Cry9Ca was much more potent than Cry1Bb or Cry2Aa and thus might be especially useful against diamondback moth.  相似文献   

20.
We have isolated a strain of Bacillus thuringiensis (Bt) from Indian soil samples that was shown to be toxic to Achaea janata larvae. The isolate, named B. thuringiensis DOR4, serotypically identified with the standard subspecies kurstaki (H3a3b3c) and produced bipyramidal inclusions along with an amorphous type. Although the plasmid pattern of DOR4 was different from that of the reference strain, a crystal protein profile showed the presence of two major bands (130 and 65 kDa) similar to those of Bt subsp. kurstaki HD-1. To verify the cry gene content of DOR4, triplex PCR analysis was performed; it showed amplification of the cry1C gene in addition to cry1Aa, cry1Ac, cry2A, and cry2B genes, but not the cry1Ab gene. RT-PCR analysis showed the expression of cry1Aa and cry1Ac genes. In vitro proteolysis of DOR4 protoxin with midgut extract generated products of different sizes. Zymogram analysis of DOR4 protoxin as substrate pointed to a number of distinct proteases that were responsible for activation of protoxins. Furthermore, toxin overlay analysis revealed the presence of multiple toxin-binding proteins in midgut epithelium. Based on all these characterizations, we suggest that the Bt DOR4 strain can be exploited for an A. janata control program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号