共查询到20条相似文献,搜索用时 0 毫秒
1.
The binding of propidium to poly(dA).poly(dT) [poly(dA.dT)] and to poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]] has been compared under a variety of solution conditions by viscometric titrations, binding studies, and kinetic experiments. The binding of propidium to poly[d(A-T)2] is quite similar to its binding to calf thymus deoxyribonucleic acid (DNA). The interaction with poly(dA.dT), however, is quite unusual. The viscosity of a poly(dA.dT) solution first decreases and then increases in a titration with propidium at 18 degrees C. The viscosity of poly[d(A-T)2] shows no decrease in a similar titration. Scatchard plots for the interaction of propidium with poly(dA.dT) show the classical upward curvature for positive cooperativity. The curvature decreases as the temperature is increased in binding experiments. A van't Hoff plot of the observed binding constants yields an apparent positive enthalpy of approximately +6 kcal/mol for the propidium-poly(dA.dT) interaction. Propidium binding to poly[d(A-T)2] shows no evidence for positive cooperativity, and the enthalpy change for the reaction is approximately -9 kcal/mol. Both the magnitude of the dissociation constants and the effects of ionic strength are quite similar for the dissociation of propidium from poly(dA-T)2] and from poly[d(A-T)2], suggesting that the intercalated states are similar for the two complexes. The observed association reactions, under pseudo-first-order conditions, are quite different. Plots of the observed pseudo-first-order association rate constant vs. polymer concentration have much larger slopes for propidium binding to poly[d(A-T)2] than to poly(dA.dT).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Circular dichroism (CD) data indicated that fd gene 5 protein (G5P) formed complexes with double-stranded poly(dA.dT) and poly[d(A-T).d(A-T)]. CD spectra of both polymers at wavelengths above 255 nm were altered upon protein binding. These spectral changes differed from those caused by strand separation. In addition, the tyrosyl 228-nm CD band of G5P decreased more than 65% upon binding of the protein to these double-stranded polymers. This reduction was significantly greater than that observed for binding to single-stranded poly(dA), poly(dT), and poly[d(A-T)] but was similar to that observed for binding of the protein to double-stranded RNA [Gray, C.W., Page, G.A., & Gray, D.M. (1984) J. Mol. Biol. 175, 553-559]. The decrease in melting temperature caused by the protein was twice as great for poly[d(A-T).d(A-T)] as for poly(dA.dT) in 5 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7. Upon heat denaturation of the poly(dA.dT)-G5P complex, CD spectra showed that single-stranded poly(dA) and poly(dT) formed complexes with the protein. The binding of gene 5 protein lowered the melting temperature of poly(dA.dT) by 10 degrees C in 5 mM Tris-HCl, pH 7, but after reducing the binding to the double-stranded form of the polymer by the addition of 0.1 M Na+, the melting temperature was lowered by approximately 30 degrees C. Since increasing the salt concentration decreases the affinity of G5P for the poly(dA) and poly(dT) single strands and increases the stability of the double-stranded polymer, the ability of the gene 5 protein to destabilize poly(dA.dT) appeared to be significantly affected by its binding to the double-stranded form of the polymer. 相似文献
3.
Complexes between netropsin and two polynucleotides containing only AT base pairs (poly d(A-T) and poly dA.poly dT) have been prepared at various drug/base pair ratios and studied in solution by Fourier Transform Infrared Spectroscopy. The drug is shown to interact in the narrow groove of poly d(A-T) with the C2O2 carbonyl of thymines and the N3 groups of adenines. Moreover the spectral modifications allow us to propose the existence of interactions at the level of the deoxyribose. No effect is detected on the phosphate groups when netropsin is progressively added. In the case of poly dA.poly dT the interaction seems much weaker as if the high propeller twist of the homopolymer would make the accessibility of the drug to the minor groove more difficult. 相似文献
4.
Infrared dichroism measurements of oriented films of poly(dA)·poly(dT) and poly[d(A-T)]·poly[d(A-T)] have been made under the conditions of low salts content and high humidity for which the geometry is known. The angles which the transition moments make with the helix axis are compared with the orientations of the corresponding bonds. Except for the in-plane base model of poly[(A-T)]·poly[d(A-T)], there is no agreement. This may imply either that a model which assumes bonds and transition moments to be colinear is not acceptable or that x-ray data are inaccurate. These possibilities are discussed especially with respect to phosphate group orientation. An appendix gives the derivations of dichroic-ratio expressions for helical molecules of different symmetry types. 相似文献
5.
Raman spectroscopy of Z-form poly[d(A-T)].poly[d(A-T) 总被引:3,自引:0,他引:3
Helical structures of double-stranded poly[d(A-T)] in solution have been studied by Raman spectroscopy. While the classical right-handed conformation B-type spectra are obtained in the case of sodium chloride solutions, a Z-form Raman spectrum is observed by addition of nickel ions at high sodium concentration, conditions in which the inversion of the circular dichroic spectrum of poly[d(A-T)] is detected, similar to that observed for high-salt poly[d(G-C)] solutions [Bourtayre, P., Liquier, J., Pizzorni, L., & Taillandier, E. (1987) J. Biomol. Struct. Dyn. 5, 97-104]. The characterization of the Z-form spectrum of poly[d(A-T)] is proposed by comparison with previously obtained characteristic Raman lines of Z-form poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)] solutions and of d(CG)3 and d(CGCATGCG) crystals [Thamann, T. J., Lord, R. C., Wang, A. H.-J., & Rich, A. (1981) Nucleic Acids Res. 9, 5443-5457; Benevides, J. M., Wang, A. H.-J., van der Marel, G. A., van Boom, J. H., Rich, A., & Thomas, G. J., Jr. (1984) Nucleic Acids Res. 14, 5913-5925]. Detailed spectroscopic data are presented reflecting the reorientation of the purine-deoxyribose entities (C2'-endo/anti----C3'-endo/syn), the modification of the phosphodiester chain, and the adenosine lines in the 1300-cm-1 region. The role played by the hydrated nickel ions in the B----Z transition is discussed. 相似文献
6.
Vardevanyan PO Antonyan AP Parsadanyan MA Davtyan HG Boyajyan ZR Karapetian AT 《Journal of biomolecular structure & dynamics》2005,22(4):465-470
The interaction of Ethidium Bromide (EtBr) with double-stranded (ds-) and single-stranded (ss-) poly[d(A-T)] was studied in different ionic strengths solutions. Optical spectroscopy and Scatchard analysis results indicate that the ligand interacts to both helix and coiled structures of the polynucleotide by "strong" and "weak" binding modes. The association parameters (binding constant -K- and the number of nucleotides corresponding to a binding site -n) of the strong type of interaction were found to be independent of Na+ concentration. Weak interaction occurs at low ionic strength and/or high EtBr concentration. Estimated binding parameters of EtBr with ss- and ds-polynucleotide are in good agreement with those for EtBr-B-DNA complexes. Data obtained provided an evidence for a stacking interaction of EtBr with single stranded poly[d(A-T)]. 相似文献
7.
Right- and left-handed helixes of poly[d(A-T)].poly[d(A-T)] investigated by infrared spectroscopy 总被引:3,自引:0,他引:3
The secondary structures of double-stranded poly[d(A-T)].poly[d(A-T)] in films have been studied by IR spectroscopy with three different counterions (Na+, Cs+, and Ni2+) and a wide variety of water content conditions (relative humidity between 100 and 47%). In addition to the A-, B-, C-, and D-form spectra, a new IR spectrum has been obtained in the presence of nickel ions. The IR spectra of Ni2+-poly[d(A-T)].poly[d(A-T)] films are analyzed by comparison with previously assigned IR spectra of left-handed poly[d(G-C)].poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)], and it is possible to conclude that they reflect a Z-type structure for poly[d(A-T)].poly[d(A-T)]. The Z conformation has been favored by the high polynucleotide concentration, by the low water content of the films, and by specific interactions of the transition metal ions with the purine bases stabilized in a syn conformation. A structuration of the water hydration molecules around the double-stranded Ni2+-poly[d(A-T)].poly[d(A-T)] is shown by the presence of a strong sharp water band at 1615 cm-1. 相似文献
8.
Chandrasekaran R Giacometti A Arnott S 《Journal of biomolecular structure & dynamics》2000,17(6):1011-1022
The molecular structure of poly (dT).poly (dA).poly (dT) has been determined and refined using the continuous x-ray intensity data on layer lines in the diffraction pattern obtained from an oriented fiber of the DNA. The final R-value for the preferred structure is 0.29 significantly lower than that for plausible alternatives. The molecule forms a 12-fold right-handed triple-helix of pitch 38.4 A and each base triplet is stabilized by a set of four Crick-Watson-Hoogsteen hydrogen bonds. The deoxyribose rings in all the three strands have C2'-endo conformations. The grooveless cylindrical shape of the triple-helix is consistent with the lack of lateral organization in the fiber. 相似文献
9.
The sodium dodecyl sulfate driven dissociation reactions of daunorubicin (1), mitoxantrone (2), ametantrone (3), and a related anthraquinone without hydroxyl groups on the ring or side chain (4) from calf thymus DNA, poly[d(G-C)]2, and poly[d(A-T)]2 have been investigated by stopped-flow kinetic methods. All four compounds exhibit biphasic dissociation reactions from their DNA complexes. Daunorubicin and mitoxantrone have similar dissociation rate constants that are lower than those for ametantrone and 4. The effect of temperature and ionic strength on both rate constants for each compound is similar. An analysis of the effects of salt on the two rate constants for daunorubicin and mitoxantrone suggests that both of these compounds bind to DNA through a mechanism that involves formation of an initial outside complex followed by intercalation. The daunorubicin dissociation results from both poly[d(G-C)]2 and poly[d(A-T)]2 can be fitted with a single exponential function, and the rate constants are quite close. The ametantrone and 4 polymer dissociation results can also be fitted with single exponential curves, but with these compounds the dissociation rate constants for the poly[d(G-C)]2 complexes are approximately 10 times lower than for the poly[d(A-T)]2 complexes. Mitoxantrone also has a much slower dissociation rate from poly[d(G-C)]2 than from poly[d(A-T)]2, but its dissociation from both polymers exhibits biphasic kinetics. Possible reasons for the biphasic behavior with the polymers, which is unique to mitoxantrone, are selective binding and dissociation from the alternating polymer intercalation sites and/or dual binding modes of the intercalator with both side chains in the same groove or with one side chain in each groove. 相似文献
10.
11.
Mercury-induced transitions between right-handed and putative left-handed forms of poly[d(A-T).d(A-T)] and poly[d(G-C).d(G-C)] 下载免费PDF全文
Poly[d(A-T).d(A-T)] and poly[d(G-C).d(G-C)], each dissolved in 0.1 M NaClO4, 5 mM cacodylic acid buffer, pH 6.8, experience inversion of their circular dichroism (CD) spectrum subsequent to the addition of Hg(ClO4)2. Let r identical to [Hg(ClO4)2]added/[DNA-P]. The spectrum of the right-handed form of poly[d(A-T).d(A-T)] turns into that of a seemingly left-handed structure at r greater than or equal to 0.05 while a similar transition is noted with poly[d(G-C).(G-C)] at r greater than or equal to 0.12. The spectral changes are highly cooperative in the long-wavelength region above 250 nm. At r = 1.0, the spectra of the two polymers are more or less mirror images of their CD at r = 0. While most CD bands experience red-shifts upon the addition of Hg(ClO4)2, there are some that are blue-shifted. The CD changes are totally reversible when Hg(II) is removed from the nucleic acids by the addition of a strong complexing agent such as NaCN. This demonstrates that mercury keeps all base pairs in register. 相似文献
12.
Acoustical investigation of poly(dA).poly(dT), poly[d(A-T)], poly(A).poly(U) and DNA hydration in dilute aqueous solutions. 下载免费PDF全文
Apparent molar adiabatic compressibilities and apparent molar volumes of poly[d(A-T)].poly[d(A-T)], poly(dA).poly(dT), DNA and poly(A).poly(U) in aqueous solutions were determined at 1 degree C. The change of concentration increment of the ultrasonic velocity upon replacing counter ion Cs+ by the Mg2+ ion was also determined for these polymers. The following conclusions have been made: (1) the hydration of the double helix of poly(dA).poly(dT) is remarkably larger than that of other polynucleotides; (2) the hydration of the AT pair in the B-form DNA is larger than that of the GC pair; (3) the substitution of Cs+ for Mg2+ ions as counter ions results in a decrease of hydration of the system polynucleotide plus Mg2+, and (4) the magnitude of this dehydration depends on the nucleotide sequence; the following rule is true: the lesser is a polynucleotide hydration, the larger dehydration upon changing Cs+ for Mg2+ ions in the ionic atmosphere of polynucleotide. 相似文献
13.
A A Cherny? Iu P Lysov I A Il'icheva A S Zibrov A K Shchelkina O F Borisova O K Mamaeva V L Florent'ev 《Molekuliarnaia biologiia》1990,24(5):1399-1410
Conformational analysis of four stranded DNA helices poly(dT).poly(dA).poly(dA).poly(dT) with parallel arrangement of the identical sugar-phosphate chains connected by twofold symmetry has been performed. All possible models of symmetrical base binding were checked. By the potential energy optimization the dihedral angles and helices parameters of stable conformations of four stranded polynucleotides were calculated. The dependences of conformational energy on the base complex structure and mutual orientation of the poly(dA).and poly(dT) chains were studied. Possible biological functions of four stranded helices are discussed. 相似文献
14.
Four-stranded DNA helices: conformational analysis of regular poly(dT).poly(dA).poly(dA).poly(dT) helices with various types of base binding 总被引:1,自引:0,他引:1
A A Chernyi I A Lysov YuPIl'ychova A S Zibrov A K Shchyolkina O F Borisova O K Mamaeva V L Florentiev 《Journal of biomolecular structure & dynamics》1990,8(3):513-527
The paper presents results obtained in conformational analysis of homopolymeric four-stranded poly(dT).poly(dA).poly(dA).poly(dT) DNA helices in which the pairs of strands with identical bases are parallel and have a two-fold symmetry axis. All possible models of base binding to yield a symmetric complex have been considered. The dihedral angles of sugar-phosphate backbones and helix parameters, which are consistent with the minima of conformational energy for four-stranded DNAs, have been determined using the results of optimization of conformational energy calculated at atom-atom approximation. Potential energy is shown to depend on the structure of base complexes and on the mutual orientation of unlike strands. Possible biological functions of four-stranded helices are discussed. 相似文献
15.
A ribonuclease isolated earlier from bovine seminal plasma by DNA-affinity chromatography (Ramakrishnamurti, T. and Pandit, M.W. (1983) J. Chromatogr. 260, 216-222) has now been shown by thermal denaturation studies to destabilize the double-helical structure of DNA and poly[d(A-T).d(A-T)]. Thermal denaturation profiles of DNA in the presence of the protein are much more complicated due to the denaturation of protein itself in the temperature range over which DNA predominantly melts. The protein shows relatively stronger affinity towards denatured DNA as compared to native DNA. The action of micrococcal nuclease on DNA and its complexes with ribonuclease A and bovine seminal ribonuclease indicates that both of these proteins destabilize the double-helical structure of native DNA and thereby render the DNA more sensitive to the micrococcal nuclease. 相似文献
16.
Conformational properties of poly[d(G-T)].poly[d(C-A)] and poly[d(A-T)] in low- and high-salt solutions: NMR and laser Raman analysis 总被引:1,自引:0,他引:1
31P- and 1H-nmr and laser Raman spectra have been obtained for poly[d(G-T)]·[d(C-A)] and poly[d(A-T)] as a function of both temperature and salt. The 31P spectrum of poly[d(G-T)]·[d(C-A)] appears as a quadruplet whose resonances undergo separation upon addition of CsCl to 5.5M. 1H-nmr measurements are assigned and reported as a function of temperature and CsCl concentration. One dimensional nuclear Overhauser effect (NOE) difference spectra are also reported for poly[d(G-T)]·[d(C-A)] at low salt. NOE enhancements between the H8 protons of the purines and the C5 protons of the pyrimidines, (H and CH3) and between the base and H-2′,2″ protons indicate a right-handed B-DNA conformation for this polymer. The NOE patterns for the TH3 and GH1 protons in H2O indicate a Watson–Crick hydrogen-bonding scheme. At high CsCl concentrations there are upfield shifts for selected sugar protons and the AH2 proton. In addition, laser Raman spectra for poly[d(A-T)] and poly[d(G-T)]·[d(C-A)] indicate B-type conformations in low and high CsCl, with predominantly C2′-endo sugar conformations for both polymers. Also, changes in base-ring vibrations indicate that Cs+ binds to O2 of thymine and possibly N3 of adenine in poly[d(G-T)]·[d(C-A)] but not in poly[d(A-T)]. Further, 1H measurements are reported for poly[d(A-T)] as a function of temperature in high CsCl concentrations. On going to high CsCl there are selective upfield shifts, with the most dramatic being observed for TH1′. At high temperature some of the protons undergo severe changes in linewidths. Those protons that undergo the largest upfield shifts also undergo the most dramatic changes in linewidths. In particular TH1′, TCH3, AH1′, AH2, and TH6 all undergo large changes in linewidths, whereas AH8 and all the H-2′,2″ protons remain essentially constant. The maximum linewidth occurs at the same temperature for all protons (65°C). This transition does not occur for d(G-T)·d(C-A) at 65°C or at any other temperature studied. These changes are cooperative in nature and can be rationalized as a temperature-induced equilibrium between bound and unbound Cs+, with duplex and single-stranded DNA. NOE measurements for poly[d(A-T)] indicate that at high Cs+ the polymer is in a right-handed B-conformation. Assignments and NOE effects for the low-salt 1H spectra of poly[d(A-T)] agree with those of Assa-Munt and Kearns [(1984) Biochemistry 23 , 791–796] and provide a basis for analysis of the high Cs+ spectra. These results indicate that both polymers adopt a B-type conformation in both low and high salt. However, a significant variation is the ability of the phosphate backbone to adopt a repeat dependent upon the base sequence. This feature is common to poly[d(G-T)]·[d(C-A)], poly[d(A-T)], and some other pyr–pur polymers [J. S. Cohen, J. B. Wouten & C. L Chatterjee (1981) Biochemistry 20 , 3049–3055] but not poly[d(G-C)]. 相似文献
17.
Proflavin binding to poly[d(A-T)] and poly[d(A-br5U)]: triplet state and temperature-jump kinetics 总被引:2,自引:0,他引:2
The delayed fluorescence properties of proflavin have been exploited in studies of the excited-state binding kinetics of the dye to poly[d(A-T)] and its brominated analogue poly[d(A-br5U)] at room temperature and pH 7. The two analyzed luminescence decay times of the DNA-dye complex are dependent on the total nucleic acid concentration. This dependence is shown to reflect a temporal coupling of the intrinsic delayed emission decay rates with the dynamic chemical kinetic binding processes in the excited state. Temperature-jump kinetic studies conducted on the brominated polymer and corresponding information on poly[d(A-T)] from a previous study [Ramstein, J., Ehrenberg, M., & Rigler, R. (1980) Biochemistry 19, 3938-3948] provide complementary information about the ground state. In the ground state, the poly[d(A-T)]-proflavin complex has one chemical relaxation time, which reaches a plateau at high DNA concentrations. The brominated DNA-dye complex exhibits two relaxation times: a faster relaxation mode that behaves similarly to that for the unhalogenated DNA and a slower relaxation mode that is apparent at high DNA concentrations. The ground-state kinetic data are analyzed in terms of two alternative models incorporating series and parallel reaction schemes. The former consists of two sequential binding steps--a fast bimolecular process followed by a monomolecular step--while the latter consists of two coupled bimolecular steps. A similar analysis for the excited-state data yields reasonable kinetic constants only for the series model, which, in accordance with previous proposals for acridine intercalators, consists of a fast outside binding step followed by intercalation of the dye. A comparison of the ground- and excited-state kinetic parameters reveals that the external binding process is much stronger and the intercalation is much weaker in the excited state. That the excited-state data are only consistent with the series model suggests that delayed luminescence studies may provide a general tool for distinguishing between the two kinetic mechanisms. In particular, we demonstrate the use of delayed luminescence spectroscopy as a tool for probing dynamic DNA-ligand interactions in solution. 相似文献
18.
The binding of CC-1065 to thymidine and deoxyadenosine oligonucleotides and to poly(dA).poly(dT) 总被引:1,自引:0,他引:1
W C Krueger D J Duchamp L H Li A Moscowitz G L Petzold M D Prairie D H Swenson 《Chemico-biological interactions》1986,59(1):55-72
In this work, we report on the binding of the novel antitumor agent CC-1065 to poly(dA).poly(dT) and to mixtures of dA and dT oligomers as determined by electronic absorption and circular dichroism (CD) methods. In addition, the DNA binding properties of CC-1065 and its binding mechanism are compared to those of netropsin. CC-1065 binds to the polymer by at least three mechanisms to produce one irreversibly and two reversibly bound species. One reversibly bound species is moderately stable, but in time (days), it converts to the irreversibly bound species. Both of these species bind within the minor groove of the polymer and exhibit intense CC-1065 induced CD spectra. The other reversibly bound species does not acquire an induced CD. CC-1065 forces B-form duplex formation between mixtures of single strand dA and dT oligomers and binds irreversibly to the duplexes without showing the presence of an intermediate, reversibly bound species. The induced CD increases with increasing length of the oligomer, from the 5-mer (barely detectable CD) to the 14-mer (intense CD). The 7-, 10- and 14-mer mixtures bind about 1, between 1 and 2, and between 2 and 3 CC-1065 molecules, respectively. Computer graphic models of the CC-1065-DNA complex show that the covalent adduct of CC-1065 and unreacted CC-1065 can attain the same close van der Waals contacts between adenine C2 hydrogens and antibiotic CH groups that were observed in the crystal structure of the netropsin-DNA complex. These contacts may account for the dA-dT base pair binding specificity of CC-1065 and for the stability of the reversibly bound CC-1065 species. 相似文献
19.
The DNA photoproduct responsible for the ultraviolet (UV) light-induced -1 frameshift mutation remains unknown. We recently identified a UV photoproduct consisting of a cyclobutane dimer occurring between non-adjacent thymine residues in the same strand, [sequence: see text] and proposed that replication across this unrepaired photoproduct might result in a -1 frameshift mutation since the intervening base is extrahelical. Until now this novel photoproduct has only been identified in single-stranded DNA polymers and does not occur in UV-irradiated double-stranded polymers due to conformational restraint. This observation suggested that this photoproduct could only occur in vivo in chromosomal sites that were single-stranded. In the current work the cis-syn dithymine cyclobutane dimer has been identified in the self-complementary polymer poly[d(A-T)] when UV irradiated in solution conditions (concentrated manganese chloride or 60% ethanol plus trace salts) wherein this polymer remains double-stranded but the double-helix is partially destabilized. Taken together, the current findings suggest that dipyrimidine photoproducts between non-adjacent residues on the same strand could occur in vivo in double-stranded, but partially destabilized, DNA. 相似文献
20.
P. O. Vardevanyan A. P. Antonyan G. A. Manukyan A. T. Karapetyan A. K. Shchyolkina O. F. Borisova 《Molecular Biology》2000,34(2):272-276
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained.
The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation
complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1≤K≤1.4·106 M−1, free energy ΔG
o=−8.7±0.3 kcal/mol, enthalpy ΔH
o≅0, and entropy ΔS
o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T
m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT
m of free homopolymer, whereas the half-width of the transition (T
m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT)
denatured at 70°C: strong (K
1=1.7·105 M−1; ΔG
o=−8.10±0.03 kcal/mol) and weak (K
2=2.9·103 M−1; ΔG
o=−6.0±0.3 kcal/mol).The ΔG
o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding
with single-stranded regions of poly(dA)poly(dT) is discussed. 相似文献