首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of tertiary amine local anesthetics (procaine, lidocaine, tetracaine and dibucaine) and chlorpromazine were investigated for three enzyme activities associated with rat brain synaptosomal membranes, i.e., (Na+ + K+)-ATPase (ouabain-sensitive), Mg2+-ATPase (ouabain-insensitive) and acetylcholinesterase. Approximately the same concentrations of each agent gave 50% inhibition of both ATPase, for example 7.9 and 10 mM tetracaine for Mg2+-ATPase and (Na+ + K+)-ATPase, respectively; these concentrations are 10-fold higher than required for inhibition of mitochondrial F1-ATPase. The relative inhibitory potency of the several agents was proportional to their octanol/water partition coefficients. Acetylcholinesterase was inhibited by all agents tested, but the ester anesthetics (procaine and tetracaine) were considerably more potent than the others after correction for partition coefficient differences. For tetracaine, 0.18 mM gave 50% inhibition and showed competitive inhibition on a Lineweaver-Burk plot, but for dibucaine a mixed type of inhibition was observed, and 0.63 mM was required for 50% inhibition. Tetracaine evidently binds at the active site, and dibucaine at the peripheral or modulator site, on this enzyme.  相似文献   

2.
The phosphorylation of vinculin by a highly purified src kinase was stimulated by anionic phospholipids and inhibited to varying degrees, by chlorpromazine, imipramine, dibucaine and tetracaine. The drug effects are ascribed to a competitive inhibition of the activation process by their ability to interact with phospholipid.  相似文献   

3.
Neeraj Agarwal  Vijay K. Kalra 《BBA》1984,764(1):105-113
The F1-ATPase from Mycobacterium phlei is inactivated by dicyclohexylcarbodiimide (DCCD), 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and quinacrine mustard. The inactivation is both time-and concentration-dependent and in the case of DCCD being more pronounced at acidic pH. The minimum inactivation half-time (t12) for DCCD, NBD-Cl and quinacrine mustard was observed to be 14, 6 and 7 min, respectively. Inactivation of F1-ATPase resulted in the incorporation of [14C]DCCD as well as [14C]NBD-Cl into α and γ subunits. The incorporation of label into α and γ subunits, utilizing [14C]NBD-Cl, was reversible by dithiothreitol. Complete inactivation, by linear extrapolation to zero activity, revealed that 4 mol [14C]DCCD and 4 mol [14C]NBD-Cl bind per mol F1-ATPase. Kinetic and binding studies show that these probes bind to site(s) distinct from ATP-binding site in F1-ATPase from M. phlei.  相似文献   

4.
5.
6.
7.
8.
We have measured the inhibitory potencies of local anesthetics (procaine, lidocaine, tetracaine and dibucaine) on ATP-mediated H+-translocation, Ca2+-transport and ATPase activity in membrane vesicles from Mycobacterium phlei. Procaine and lidocaine up to 1 mM concentration did not inhibit ATP-dependent H+-translocation, Ca2+-transport and ATPase activity. However, tetracaine and dibucaine at 0.2 mM concentration caused dissipation of the proton gradient, measured by the reversal of the quenching of fluorescence of quinacrine, and inhibition of active Ca2+-transport. Tetracaine (1 mM) inhibited membrane-bound ATPase activity without affecting solubilized F1-ATPase activity. Studies show that these local anesthetics do not prevent the inactivation of F0-F1 ATPase by dicyclohexylcarbodiimide (DCCD). Binding of [14C]DCCD to F0-proteolipid component remained unchanged in the presence of tetracaine indicating that DCCD and tetracaine do not share common binding sites on the F0-proteolipid sector. The inhibition of H+-translocation and membrane-bound ATPase activity by tetracaine was substantially additive in the presence of vanadate.  相似文献   

9.
10.
Chlorpromazine and imipramine related drugs were found to activate swine renal 15-hydroxprostaglandin dehydrogenase maximally about 2 fold. Activation by these drugs was uncompetitive with respect to both prostaglandin E1 and NAD+. Hill plots of the rate of reaction against either substrates have a slope of approximately 1, which is not altered by the presence of the activator indicating no cooperativity between the substrate site and putative activator site. Ability of chlorpromazine and imipramine related drugs to activate this enzyme suggests that these drugs may facilitate the inactivation of prostaglandins invivo.  相似文献   

11.
(1) The polymorphic phase preferences of egg phosphatidylethanolamine have been examined in the presence of normal alcohols and alkanes of varying chain length, as well as charged amine anaesthetics. (2) It is shown that the charged anaesthetics, ethanol and butanol can stabilize a bilayer arrangement for egg phosphatidylethanolamine. In contrast, longer chain (C?6) normal alcohols and alkanes induce the hexagonal (HII) phase. (3) The relative potency of local anaesthetics in vitro (chlorpromazine, dibucaine, tetracaine and procaine) is mirrored by their relative ability to stabilize bilayer structure for hydrated egg phosphatidylethanolamine. Further, the aqueous concentrations of anaesthetic required to affect phospholipid polymorphism is sensitive to the lipid composition. For example, the inclusion of 20 mol% egg phosphatidylserine in egg phosphatidylethanolamine dispersions can reduce the aqueous concentrations of dibucaine required to induce appreciable bilayer stabilization effects from 5.0 mM to 0.5 mM. (4) It is suggested that the ability of amphipatic molecules such as anaesthetics to influence phosphatidylethanolamine polymorphism arises from their molecular shape. The possibility that anaesthetic molecules may exert their effects by virtue of this shape property is raised.  相似文献   

12.
13.
14.
15.
16.
E. coli F1-ATPase has been studied mainly by the genetic approach. Mutations in either the or subunit modified the kinetics of multisite and uni-site hydrolysis of ATP. The mechanism of F1-ATPase and the essential amino acid residues of subunits are discussed.Abbreviations used: Pi, inorganic phosphate; DCCD, dicyclohexylcarbodiimide.  相似文献   

17.
In intact soybean roots, chlorpromazine causes a depolarization of the membrane potential at low concentrations (as low as 30 μM, half-maximally at about 150 μM), and induces a marked decrease in ATP levels at higher concentrations (half-maximal at about 0.5 mM) over longer periods of time. In root microsomal suspensions, chlorpromazine inhibits an apparently specific ATPase activity component (half-maximally at about 0.3 mM). Chlorpromazine inhibits N,N′-dicyclohexylcarbodiimide-, diethylstilbesterol- and azide-inhibited ATPase activities. On linear sucrose gradients, chlorpromazine inhibition of ATPase activity occurs in two peaks, at 1.12 g/ml and 1.14–1.17 g/ml, which may represent a tonoplast and plasma membrane ATPase, respectively. Neither peak corresponds to the F1 ATPase. It is unclear whether ATPase inhibition or ATP loss is the cause of the membrane potential depolarization. Clearly chlorpromazine has multiple effects which are probably unrelated to its calmodulin-inhibition activity.  相似文献   

18.
19.
The effect of various sub-inhibitory concentrations of isoniazid on tryptophan uptake by Mycobacterium tuberculosis H37Rv grown in vitro and in vivo was studied. Uptake, measured after 3 minutes of drug exposure was inhibited mildly by 0.1 μg/ml and 0.2 μg/ml concentration and completely by 0.3 μg/ml. However, with the minimal inhibitory concentration (MIC)7 of 0.5 μg/ml, not only inhibition but also a strong efflux of the preformed tryptophan pool were observed. The results are discussed in the light of the theory that isoniazid interferes with the cell wall mycolate synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号