首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
The inherited epilepsy Unverricht-Lundborg disease (EPM1) is caused by loss-of-function mutations in the cysteine protease inhibitor, cystatin B. Because cystatin B inhibits a class of lysosomal cysteine proteases called cathepsins, we hypothesized that increased proteolysis by one or more of these cathepsins is likely to be responsible for the seizure, ataxia, and neuronal apoptosis phenotypes characteristic of EPM1. To test this hypothesis and to identify which cysteine cathepsins contribute to EPM1, we have genetically removed three candidate cathepsins from cystatin B-deficient mice and tested for rescue of their EPM1 phenotypes. Whereas removal of cathepsins L or S from cystatin B-deficient mice did not ameliorate any aspect of the EPM1 phenotype, removal of cathepsin B resulted in a 36-89% reduction in the amount of cerebellar granule cell apoptosis depending on mouse age. The incidence of an incompletely penetrant eye phenotype was also reduced upon removal of cathepsin B. Because the apoptosis and eye phenotypes were not abolished completely and the ataxia and seizure phenotypes experienced by cystatin B-deficient animals were not diminished, this suggests that another molecule besides cathepsin B is also responsible for the pathogenesis, or that another molecule can partially compensate for cathepsin B function. These findings establish cathepsin B as a contributor to the apoptotic phenotype of cystatin B-deficient mice and humans with EPM1. They also suggest that the identification of cathepsin B substrates may further reveal the molecular basis for EPM1.  相似文献   

4.
Cystatin B is an anti-protease implicated in myoclonus epilepsy, a degenerative disease of the central nervous system. In vitro, cystatin B interacts with and inhibits proteases of the cathepsin family. Confocal microscopy analysis of the subcellular localization of cystatin B and cathepsin B shows that, in vivo, the two proteins are concentrated in different cell compartments. In fact, cystatin B is found mainly in the nucleus of proliferating cells and both in the nucleus and in the cytoplasm of differentiated cells, while cathepsin B, in either case, is essentially cytoplasmic. However, colocalization of cystatin and cathepsin B is observed in the isolated cell matrix and in the nuclear scaffold of differentiated neuroblastoma cells but not of proliferating cells. This suggests that at least a fraction of cystatin B is bound to the protease in differentiated cells. The electron microscopy analysis of the cell matrix confirms the observation made with confocal microscopy. The cellular activity of cathepsin B was analyzed with a fluorogenic cytochemical assay. A fluorescent signal is observed in the cytoplasm of proliferating cells but is undetectable in the cytoplasm of differentiated cells, suggesting that cathepsin B is active mainly during the cell cycle. This result is consistent with the separate compartimentalization of cystatin B and cathepsin B that we have observed in growing cells.  相似文献   

5.
We have identified an interacting partner protein (encoded by the human EPM2AIP1 gene (approved symbol)) for laforin, the product of the EPM2A gene, which is mutated in an autosomal recessive form of adolescent progressive myoclonus epilepsy. The EPM2AIP1 gene was identified in a screen for laforin-interacting proteins with a human brain cDNA library using the yeast two-hybrid system. The specificity of the interaction was confirmed by coimmunoprecipitation of in vivo-transfected protein and by using EPM2A deletion constructs. Subcellular colocalization of laforin and EPM2AIP1 protein was also demonstrated. The human EPM2AIP1 gene, corresponding to the KIAA0766 cDNA clone in the databases, was characterized and shown, like EPM2A, to be ubiquitously expressed. The gene, which comprises one large exon 1824 nucleotides in length and has alternative 3' untranslated regions, maps to human chromosome 3p22.1. The function is currently not known and extensive analyses do not reveal any homology to other proteins or any obvious structural motifs. Because genetic heterogeneity in Lafora disease has been described, mutational analysis of the EPM2AIP1 gene was performed on non-EPM2A patients, but no mutations were found. The identification of this first binding partner for laforin promises to be an important step toward unraveling the underlying pathogenesis of this severest form of teenage-onset epilepsy.  相似文献   

6.
Cystatin B (CSTB) is an anti-protease frequently mutated in progressive myoclonus epilepsy (EPM1), a devastating degenerative disease. This work shows that rat CSTB is an unstable protein that undergoes structural changes following the interaction with a chaperone, either prokaryotic or eukaryotic. Both the prokaryotic DnaK and eukaryotic HSP70 promote CSTB polymerization. Denaturated CSTB is polymerized by the chaperone alone. Native CSTB monomers are more stable than denatured monomers and require Cu2 + for chaperone-dependent polymerization. Cu2 + interacts with at least two conserved histidines, at positions 72 and 95 modifying the structure of native monomeric CSTB. Subsequently, CSTB becomes unstable and readily responds to the addition of DnaK or HSP70, generating polymers. This reaction depends strictly on the presence of this divalent metal ion and on the presence of one cysteine in the protein chain. The cysteine deletion mutant does not polymerize. We propose that Cu2 + modifies the redox environment of the protein, allowing the oxidation of the cysteine residue of CSTB that triggers polymerization. These polymers are sensitive to reducing agents while polymers obtained from denatured CSTB monomers are DTT resistant. We propose that the Cu2 +/HSP70 dependent polymers are physiological and functional in eukaryotic cells. Furthermore, while monomeric CSTB has anti-protease function, it seems likely that polymeric CSTB fulfils different function(s).  相似文献   

7.
Dubey D  Parihar R  Ganesh S 《Genomics》2012,99(1):36-43
The EPM2A gene, defective in the fatal neurodegenerative disorder Lafora disease (LD), is known to encode two distinct proteins by differential splicing; a phosphatase active cytoplasmic isoform and a phosphatase inactive nuclear isoform. We report here the identification of three novel EPM2A splice variants with potential to code for five distinct proteins in alternate reading frames. These novel isoforms, when ectopically expressed in cell lines, show distinct subcellular localization, interact with and serve as substrates of malin ubiquitin ligase-the second protein defective in LD. Two phosphatase active isoforms interact to form a heterodimeric complex that is inactive as a phosphatase in vitro, suggesting an antagonistic function for laforin isoforms if expressed endogenously in significant amounts in human tissues. Thus alternative splicing could possibly be one of the mechanisms by which EPM2A may regulate the cellular functions of the proteins it codes for.  相似文献   

8.
In this study, a consanguineous family with progressive myoclonus epilepsy (PME) was clinically examined and molecularly investigated to determine the molecular events causing disease. Since exclusion of known genes indicated that novel genes causing PME still remained unidentified, homozygosity mapping, exome sequencing, as well as validation and disease-segregation analyses were subsequently carried out for both loci and gene identification. To further assure our results, a muscle biopsy and gene expression analyses were additionally performed. As a result, a homozygous, disease-segregating COL6A2 mutation, p.Asp215Asn, absent in a large number of control individuals, including control individuals of Iranian ancestry, was identified in both affected siblings. COL6A2 was shown to be expressed in the human cerebral cortex and muscle biopsy revealed no specific histochemical pathology. We conclude that the COL6A2 p.Asp215Asn mutation is likely to be responsible for PME in this family; however, additional studies are warranted to further establish the pathogenic role of both COL6A2 and the extracellular proteolysis system in the pathogenesis of PME.  相似文献   

9.
The most common mutation associated with Progressive Myoclonus Epilepsy (EPM1) of Unverricht-Lundberg type is the expansion of a dodecamer repeat, d(CCCCGCCCCGCG)n. We show that the C-rich strand of this repeat (2-3 copies) forms intercalated i-motif structure at acidic pH as judged by CD spectroscopy and anomalous gel electrophoretic mobility. The stability of the structure increases with the increase in the length of the repeat. Transient formation of stable, folded back structure like i-motif could play an important role in the mechanism of expansion of this repeat.  相似文献   

10.
The inherited epilepsy Unverricht‐Lundborg disease (EPM1) is caused by loss‐of‐function mutations in the cysteine protease inhibitor, cystatin B. Because cystatin B inhibits a class of lysosomal cysteine proteases called cathepsins, we hypothesized that increased proteolysis by one or more of these cathepsins is likely to be responsible for the seizure, ataxia, and neuronal apoptosis phenotypes characteristic of EPM1. To test this hypothesis and to identify which cysteine cathepsins contribute to EPM1, we have genetically removed three candidate cathepsins from cystatin B‐deficient mice and tested for rescue of their EPM1 phenotypes. Whereas removal of cathepsins L or S from cystatin B‐deficient mice did not ameliorate any aspect of the EPM1 phenotype, removal of cathepsin B resulted in a 36–89% reduction in the amount of cerebellar granule cell apoptosis depending on mouse age. The incidence of an incompletely penetrant eye phenotype was also reduced upon removal of cathepsin B. Because the apoptosis and eye phenotypes were not abolished completely and the ataxia and seizure phenotypes experienced by cystatin B‐deficient animals were not diminished, this suggests that another molecule besides cathepsin B is also responsible for the pathogenesis, or that another molecule can partially compensate for cathepsin B function. These findings establish cathepsin B as a contributor to the apoptotic phenotype of cystatin B‐deficient mice and humans with EPM1. They also suggest that the identification of cathepsin B substrates may further reveal the molecular basis for EPM1. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 315–327, 2003  相似文献   

11.
Apoptosis can be mediated by mechanisms other than the traditional caspase-mediated cleavage cascade. There is growing recognition that alternative proteolytic enzymes such as the lysosomal cathepsin proteases can initiate or propagate proapoptotic signals, but it is currently unclear how cathepsins achieve these actions. Recent in vitro evidence suggests that cathepsins cleave the proapoptotic Bcl-2 family member Bid, thereby activating it and allowing it to induce the mitochondrial release of cytochrome c and subsequent apoptosis. We have tested this hypothesis in vivo by breeding mice that lack cathepsin inhibition (cystatin B-deficient mice) to Bid-deficient mice, to determine whether the apoptosis caused by cathepsins is dependent on Bid signaling. We found that cathepsins are still able to promote apoptosis even in the absence of Bid, indicating that these proteases mediate apoptosis via a different pathway, or that some other molecule can functionally substitute for Bid in this system.  相似文献   

12.
13.
We have constructed a high-resolution genetic linkage map in the vicinity of the gene responsible for multiple endocrine neoplasia type 1 (MEN1). The mutation causing this disease, inherited as an autosomal dominant, predisposes carriers to development of neoplastic tumors in the parathyroid, the endocrine pancreas, and the anterior lobe of the pituitary. The 12 markers on the genetic linkage map reported here span nearly 20 cM, and linkage analysis of MEN1 pedigrees has placed the MEN1 locus within the 8-cM region between D11S480 and D11S546. The markers on this map will be useful for prenatal or presymptomatic diagnosis of individuals in families that segregate a mutant allele of the MEN1 gene.  相似文献   

14.
Progressive myoclonus epilepsy of the Unverricht-Lundborg type is an autosomal recessive disorder that is characterized clinically by myoclonic seizures and ataxia. The majority of affected individuals carry repeat expansions of a dodecamer in the promoter region of the cystatin B gene. The unusually high GC content of this tract is refractory to conventional polymerase chain reaction (PCR), and, as a result, a circumventive procedure involving the deamination of DNA with sodium bisulfite has been proposed. This study evaluates the effectiveness of this deamination modification for the detection of dodecamer repeat variants. An analysis of 258 healthy Japanese individuals revealed an allele with four copies of the dodecamer repeat with a frequency of 0.01, in addition to the more commonly observed two and three copy repeat alleles. Homozygous repeat expansions 600 and 680 base pairs in length were detected in the analyses of two affected individuals. For these cases, sequencing, along with an alternative PCR-stutter formation, revealed 41 and 48 copies, respectively, of the dodecamer repeat. The complete conversion of C to T was observed in the expanded tracts, indicating that no methylation occurred at the CpG sites. Based on these results, it was concluded that the use of deaminated DNA allows for a precise analysis of consecutive GC tracts.  相似文献   

15.
Seven phenotypically homogeneous Mediterranean myoclonus families were studied using DNA markers from the genetically defined EPM1 region on chromosome 21. No recombinations between the disease phenotype and the markers studied were detected. Within the EPM1 region, the highest lod score value of 5.07 (at = 0.00) was reached at locus PFKL. Significant allelic association (P = 0.02) between the disease mutation and PFKL was detected suggesting a founder effect in Mediterranean myoclonus. However, haplotype data using four marker loci residing within 300kb of each other and of EPM1 suggest the occurrence of more than one mutation. The data are compatible with Mediterranean myoclonus being caused by mutations in the EPM1 gene and strengthen the concept that a large subset of progressive myoclonus epilepsies conforms with Unverricht-Lundborg disease and that this subset is an etiologically homogeneous entity.  相似文献   

16.
17.
Molecular genetic analysis of the gene for arylsulfatase B (ASB) was conducted in ten Russian patients with type VI mucopolysaccharidosis (MPS VI) of different severity. Eight exons from the translated region of the ASB gene of each patient were amplified and sequenced using the nonradioactive method. Fourteen mutant alleles were identified in the sample studied by means of DNA analysis; 13 of them had not been described before. All patients except for one, who was an offspring of a consanguineous marriage, were genetic compounds with respect to the mutations found. Polymorphic sites A/G 1072 and A/G 1126, which were earlier revealed in exon 5 of the ASB gene, were found in five out of ten patients studied. The spectrum of mutant alleles of the ASB gene was highly specific and agreed with the characteristics of the population genetic load.  相似文献   

18.
Type 1 diabetes mellitus is an autoimmune disease involving both environmental and genetic factors. Genetic analyses in humans and rodents have shown that the major histocompatibility complex (MHC) is a major genetic factor and that several other genes may be involved in the development of the disease. We performed genetic analysis of type 1 diabetes in a newly established animal model, the Komeda diabetes-prone (KDP) rat, and found that most of the genetic predisposition to diabetes is accounted for by two major susceptibility genes, MHC and Iddm/kdp1. In addition, we identified a nonsense mutation in the Casitas B-lineage lymphoma b (Cblb) gene by positional cloning of Iddm/kdp1. In this paper, I review our positional cloning analysis of Iddm/kdp1 and propose a two-gene model of the development of type 1 diabetes in which two major susceptibility genes, Cblb and MHC, determine autoimmune reaction and tissue specificity to pancreatic beta-cells, respectively.  相似文献   

19.
The progressive myoclonus epilepsies (PMEs) are a group of predominantly recessive disorders that present with action myoclonus, tonic-clonic seizures, and progressive neurological decline. Many PMEs have similar clinical presentations yet are genetically heterogeneous, making accurate diagnosis difficult. A locus for PME was mapped in a consanguineous family with a single affected individual to chromosome 17q21. An identical-by-descent, homozygous mutation in GOSR2 (c.430G>T, p.Gly144Trp), a Golgi vesicle transport gene, was identified in this patient and in four apparently unrelated individuals. A comparison of the phenotypes in these patients defined a clinically distinct PME syndrome characterized by early-onset ataxia, action myoclonus by age 6, scoliosis, and mildly elevated serum creatine kinase. This p.Gly144Trp mutation is equivalent to a loss of function and results in failure of GOSR2 protein to localize to the cis-Golgi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号