首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Understanding which factors and rules govern the process of assembly in communities constitutes one of the main challenges of plant community ecology. The presence of certain functional strategies along broad environmental gradients can help to understand the patterns observed in community assembly and the filtering mechanisms that take place. We used a trait‐based approach, quantifying variations in aboveground (leaf and stem) and belowground (root) functional traits along environmental gradients in Mediterranean forest communities (south Spain). We proposed a new practical method to quantify the relative importance of species turnover (distinguishing between species occurrence and abundance) versus intraspecific variation, which allowed us to better understand the assemblage rules of these plant communities along environmental gradients. Our results showed that the functional structure of the studied plant communities was highly determined by soil environment. Results from our modelling approach based on maximum likelihood estimators showed a predominant influence of soil water storage on most of the community functional traits. We found that changes in community functional structure along environmental gradients were mainly promoted by species turnover rather than by intraspecific variability. Specifically, our new method of variance decomposition demonstrated that between‐site trait variation was the result of changes in species occurrence rather than in the abundance of certain dominant species. In conclusion, this study showed that water availability promoted the predominance of specific trait values (both in above and belowground fractions) associated to a resource acquisition or conservation strategy. In addition, we provided evidence that changes on community functional structure along the environmental gradient were mainly promoted by a process of species replacement, which represent a crucial step towards a more general understanding of the relative importance of intraspecific versus interspecific trait variation in these woody Mediterranean communities.  相似文献   

2.
Trait variation in plant communities is thought to be constrained by two opposing community assembly processes operating at discrete spatial scales: habitat filtering and limiting similarity between coexisting species. Filtering processes cause convergence in ecological strategy as species are excluded from unsuitable sites, whilst limiting similarity leads to the divergence of trait values between co‐occurring species in order to alleviate competition for finite resources. Levels of alpha (within‐site) and beta (among‐site) trait variation can be indicative of the strength of these community assembly processes. We used trait‐gradient analysis to explicitly compare evidence of community assembly patterns in lianas (woody vines) and trees. These two growth forms exhibit striking differences in carbon capture and regeneration strategies, yet trait‐based mechanisms that maintain their coexistence remain understudied. Using data for four functional traits – leaf mass per area, leaf nitrogen content (Nmass), leaf area and seed mass – we partitioned interspecific trait variation in lianas and trees into alpha and beta components. Our three key findings were: 1) lianas and trees exhibit divergent patterns of trait‐based habitat filtering, due to differences in the relationship between leaf size and the other three traits examined (LMA, Nmass and seed mass), 2) on average, liana species possess smaller seeds, lower LMA and higher Nmass than do trees, but there was no clear difference in leaf area between the two growth forms, and 3) soil fertility was correlated with trait variation (leaf area, seed mass) at the site‐level in trees, but not in lianas. These results provide evidence that dominant growth forms can be filtered into the same habitat on the basis of different combinations of traits. Our findings have important implications for community assembly and co‐existence theory and for more pragmatic matters such as using trait‐based principles to inform community restoration.  相似文献   

3.
Community assembly theory is suggested as a guiding principle for ecological restoration to help understand the mechanisms that structure biological communities and identify where restoration interventions are needed. We studied three hypotheses related to propagule limitation, stress‐dominance, and limiting similarity concepts in community assembly in a restoration field experiment with a trait‐based null model approach. The experiment aimed to assist the recovery of sand grassland on former arable land in the Kiskunság, Pannonian biogeographic region, Europe. Treatments included initial seeding of five grassland species, carbon amendment, low‐intensity mowing, and combinations in 1 m by 1 m plots in three old fields from 2003 to 2008. The distribution of 10 individual plant traits was compared to the null model and the effect of time and treatments were tested with linear mixed effect models. Initial seeding had the most visible impact on species and trait composition confirming propagule limitation in grassland recovery. Reducing nutrient availability through carbon amendment strengthened trait convergence for length of flowering as expected based on the stress‐dominance hypothesis. Mowing changed trait divergence to convergence for plant height with a strengthening impact with time, supporting our hypothesis of increasing dominance of limiting similarity with time. Our results support the idea that community assembly is simultaneously influenced by propagule limitation and multiple trait‐based processes that act through different traits. The limited impact of manipulating environmental filtering and limiting similarity compared to seeding, however, supports the view that only targeting the dispersal and environmental filters in parallel would improve restoration outcome.  相似文献   

4.
Intraspecific trait variation (ITV) is thought to play a significant role in community assembly, but the magnitude and direction of its influence are not well understood. Although it may be critical to better explain population persistence, species interactions, and therefore biodiversity patterns, manipulating ITV in experiments is challenging. We therefore incorporated ITV into a trait‐ and individual‐based model of grassland community assembly by adding variation to the plants’ functional traits, which then drive life‐history tradeoffs. Varying the amount of ITV in the simulation, we examine its influence on pairwise‐coexistence and then on the species diversity in communities of different initial sizes. We find that ITV increases the ability of the weakest species to invade most, but that this effect does not scale to the community level, where the primary effect of ITV is to increase the persistence and abundance of the competitively‐average species. Diversity of the initial community is also of critical importance in determining ITV's efficacy; above a threshold of interspecific diversity, ITV does not increase diversity further. For communities below this threshold, ITV mainly helps to increase diversity in those communities that would otherwise be low‐diversity. These findings suggest that ITV actively maintains diversity by helping the species on the margins of persistence, but mostly in habitats of relatively low alpha and beta diversity.  相似文献   

5.
Complex processes related to biotic and abiotic forces can impose limitations to assembly and composition of plant communities. Quantifying the effects of these constraints on plant functional traits across environmental gradients, and among communities, remains challenging. We define ecological constraint (Ci) as the combined, limiting effect of biotic interactions and environmental filtering on trait expression (i.e., the mean value and range of functional traits). Here, we propose a set of novel parameters to quantify this constraint by extending the trait‐gradient analysis (TGA) methodology. The key parameter is ecological constraint, which is dimensionless and can be measured at various scales, for example, on population and community levels. It facilitates comparing the effects of ecological constraints on trait expressions across environmental gradients, as well as within and among communities. We illustrate the implementation of the proposed parameters using the bark thickness of 14 woody species along an aridity gradient on granite outcrops in southwestern Australia. We found a positive correlation between increasing environmental stress and strength of ecological constraint on bark thickness expression. Also, plants from more stressful habitats (shrublands on shallow soils and in sun‐exposed locations) displayed higher ecological constraint for bark thickness than plants in more benign habitats (woodlands on deep soils and in sheltered locations). The relative ease of calculation and dimensionless nature of Ci allow it to be readily implemented at various scales and make it widely applicable. It therefore has the potential to advance the mechanistic understanding of the ecological processes shaping trait expression. Some future applications of the new parameters could be investigating the patterns of ecological constraints (1) among communities from different regions, (2) on different traits across similar environmental gradients, and (3) for the same trait across different gradient types.  相似文献   

6.
Understanding the imprint of environmental filtering on community assembly along environmental gradients is a key objective of trait‐gradient analyses. Depending on local constraints, this filtering generally entails that species departing from an optimum trait value have lower abundances in the community. The community‐weighted mean (CWM) and variance (CWV) of trait values are then expected to depict the optimum and intensity of filtering, respectively. However, the trait distribution within the regional species pool and its limits can also affect local CWM and CWV values apart from the effect of environmental filtering. The regional trait range limits are more likely to be reached in communities at the extremes of environmental gradients. Analogous to the mid‐domain effect in biogeography, decreasing CWV values in extreme environments can then represent the influence of regional trait range limits rather than stronger filtering in the local environment. We name this effect the ‘trait‐gradient boundary effect’ (TGBE). First, we use a community assembly framework to build simulated communities along a gradient from a species pool and environmental filtering with either constant or varying intensity while accounting for immigration processes. We demonstrate the significant influence of TGBE, in parallel to environmental filtering, on CWM and CWV at the extremes of the environmental gradient. We provide a statistical tool based on Approximate Bayesian Computation to decipher the respective influence of local environmental filtering and regional trait range limits. Second, as a case study, we reanalyze the functional composition of alpine plant communities distributed along a gradient of snow cover duration. We show that leaf trait convergence found in communities at the extremes of the gradient reflect an influence of trait range limits rather than stronger environmental filtering. These findings challenge correlative trait–environment relationships and call for more explicitly identifying the mechanisms responsible of trait convergence/divergence along environmental gradients.  相似文献   

7.
Despite decades of research, it remains controversial whether ecological communities converge towards a common structure determined by environmental conditions irrespective of assembly history. Here, we show experimentally that the answer depends on the level of community organization considered. In a 9‐year grassland experiment, we manipulated initial plant composition on abandoned arable land and subsequently allowed natural colonization. Initial compositional variation caused plant communities to remain divergent in species identities, even though these same communities converged strongly in species traits. This contrast between species divergence and trait convergence could not be explained by dispersal limitation or community neutrality alone. Our results show that the simultaneous operation of trait‐based assembly rules and species‐level priority effects drives community assembly, making it both deterministic and historically contingent, but at different levels of community organization.  相似文献   

8.
Karel Mokany  Stephen H. Roxburgh 《Oikos》2010,119(9):1504-1514
The concept of community assembly through trait‐based environmental filtering has played a key role in our understanding of how communities change over space and time, however, the importance of spatial scale in the filtering process remains unclear. We propose that different environmental filters may operate at different spatial scales, and that filters at finer scales would be nested within those acting at coarser scales. We tested for the existence of spatially nested sets of trait‐based filters in a temperate native grassland by applying the recently proposed maximum entropy (MaxEnt) approach to trait‐based community assembly, which we extend through a trait selection procedure. We found that different traits were important in influencing the abundances of species at the three different spatial scales examined (micro‐habitat, habitat, landscape), supporting the idea that trait based filtering processes operating at coarse spatial scales can be quite distinct from those operating at fine scales. Despite this result, we identified several traits which were frequently related to abundance at all spatial scales. Taken together, our results support the proposition that trait‐based environmental filters at finer spatial scales are nested within those operating at coarser scales. We compared our results to those obtained using a simpler trait‐by‐trait analytical approach (correlation analysis and MaxEnt on individual traits). The capacity for MaxEnt to incorporate multiple traits simultaneously provided unique insights into the important traits at each spatial scale and presents significant advantages over existing univariate and multivariate approaches.  相似文献   

9.
Despite several decades of study in community ecology, the relative importance of the ecological processes that determine species co‐occurrence across spatial scales remains uncertain. Some of this uncertainty may be reduced by studying the scale dependency of community assembly in the light of environmental variation. Phylogenetic information and functional trait information are often used to provide potentially valuable insights into the drivers of community assembly. Here, we combined phylogenetic and trait‐based tests to gain insights into community processes at four spatial scales in a large stem‐mapped subtropical forest dynamics plot in central China. We found that all of the six leaf economic traits measured in this study had weak, but significant, phylogenetic signal. Nonrandom phylogenetic and trait‐based patterns associated with topographic variables indicate that deterministic processes tend to dominate community assembly in this plot. Specifically, we found that, on average, co‐occurring species were more phylogenetically and functionally similar than expected throughout the plot at most spatial scales and assemblages of less similar than expected species could only be found on finer spatial scales. In sum, our results suggest that the trait‐based effects on community assembly change with spatial scale in a predictable manner and the association of these patterns with topographic variables, indicates the importance of deterministic processes in community assembly relatively to random processes.  相似文献   

10.
Aim The drivers of species assembly, by limiting the possible range of functional trait values, can lead to either convergent or divergent distributions of traits in realized assemblages. Here, to evaluate the strengths of these species assembly drivers, we partition trait variance across global, regional and community scales. We then test the hypothesis that, from global to community scales, the outcome of co‐occurring trait convergence and divergence is highly variable across biomes and communities. Location Global: nine biomes ranging from subarctic highland to tropical rain forest. Methods We analysed functional trait diversity at progressively finer spatial scales using a global, balanced, hierarchically structured dataset from 9 biomes, 58 communities and 652 species. Analyses were based on two key leaf traits (foliar nitrogen content and specific leaf area) that are known to drive biogeochemical cycling. Results While 35% of the global variance in these traits was between biomes, only 15% was between communities within biomes and as much as 50% occurred within communities. Despite this relatively high within‐community variance in trait values, we found that trait convergence dominated over divergence at both global and regional scales through comparisons of functional trait diversity in regional and community assemblages against random (null) models of species assembly. Main conclusions We demonstrate that the convergence of traits occurring from global to regional assemblages can be twice as strong as that from regional to community assemblages, and argue that large differences in the nature and strength of abiotic and biotic drivers of dominant species assembly can, at least partly, explain the variable outcome of simultaneous trait convergence and divergence across sites. Ultimately, these findings stress the urgent need to extend species assembly research to address those scales where trait variance is the highest, i.e. between biomes and within communities.  相似文献   

11.
Species enter and persist in local communities because of their ecological fit to local conditions, and recently, ecologists have moved from measuring diversity as species richness and evenness, to using measures that reflect species ecological differences. There are two principal approaches for quantifying species ecological differences: functional (trait‐based) and phylogenetic pairwise distances between species. Both approaches have produced new ecological insights, yet at the same time methodological issues and assumptions limit them. Traits and phylogeny may provide different, and perhaps complementary, information about species' differences. To adequately test assembly hypotheses, a framework integrating the information provided by traits and phylogenies is required. We propose an intuitive measure for combining functional and phylogenetic pairwise distances, which provides a useful way to assess how functional and phylogenetic distances contribute to understanding patterns of community assembly. Here, we show that both traits and phylogeny inform community assembly patterns in alpine plant communities across an elevation gradient, because they represent complementary information. Differences in historical selection pressures have produced variation in the strength of the trait‐phylogeny correlation, and as such, integrating traits and phylogeny can enhance the ability to detect assembly patterns across habitats or environmental gradients.  相似文献   

12.
Ecological communities and their response to environmental gradients are increasingly being described by measures of trait composition at the community level – the trait‐based approach. Whether ecological or non‐ecological processes influence trait composition between communities has been debated. Understanding the processes that influence trait composition is important for reconstructing paleoenvironmental conditions from fossil deposits and for understanding changes in community functionality through time. Here, we assess the influence of ecological and non‐ecological processes on the distribution of traits within North American mammals. We found that non‐ecological processes including historical contingency, spatial autocorrelation, and evolutionary history do not influence trait composition; however, the variance in trait composition is highly explained by climate gradients. Our results suggest that habitat breadth, terrestriality, diet breadth, and reproductive traits are strong candidates as proxies for measuring functional aspects of environments in the past and present.  相似文献   

13.
Quantifying relationships between plant functional traits and abiotic gradients is valuable for evaluating potential responses of forest communities to climate change. However, the trajectories of change expected to occur in tropical forest functional characteristics as a function of future climate variation are largely unknown. We modeled community level trait values of Costa Rican rain forests as a function of current and future climate, and quantified potential changes in functional composition. We calculated per‐plot community weighted mean (CWM) trait values for leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen (N) and phosphorus (P) content, and wood basic specific gravity (WSG), for tree and palm species in 127 0.25 ha plots. We modeled the response of CWM traits to current temperature and precipitation gradients using generalized additive modeling. We then predicted and mapped CWM traits values under current and future climate, and quantified potential changes under a global warming scenario (RCP8.5, year 2050). We calculated the area within the multi trait functional space occupied by forest plots under both current and future climate, and determined potential changes in functional space occupied by forest plots. Overall, precipitation predicted CWM traits better than temperature. Models indicated increases in CWM SLA, N and P, and a decrease in CWM LDMC under climate change. Lowland forest communities converged on a single direction of change towards more acquisitive CWM trait values, indicating a change in forest functional composition resulting from a changed climate. Functional space occupied by forest plots was reduced by 50% under the future climate. Functional composition changes may have further effects on forests ecosystem services. Assessing functional trait spatial‐gradients can help bridge the gap between species‐based biogeography and biogeochemical approaches to strengthen biodiversity and ecosystem services conservation efforts.  相似文献   

14.
Kenny Helsen  Martin Hermy  Olivier Honnay 《Oikos》2012,121(12):2121-2130
Community assembly or succession was traditionally thought of as being deterministic and directional, leading to a clearly defined climax state. The alternative view, however, keeps gaining attention. This view states that community assembly is influenced by historical processes, where differences in the sequence and timing of species arrival result in distinct communities. Here we tested the hypothesis that both views are valid, but at a different level, with increasing dissimilarity in species composition among sites with increasing age (divergence), caused by historical processes (priority effects), and with increasing similarity in mean trait composition (convergence) among sites, indicating a directional development at the niche level. We surveyed a chronosequence of restored semi‐natural grassland patches on former pine plantations over seven restoration age classes, covering 22 grasslands. Pairwise multivariate distances were calculated between the different grassland patches based on species abundance on the one hand, and on mean community trait values for 28 plant life history traits on the other. Trait composition showed a clear decrease in multivariate distance with increasing restoration age, indicating trait convergence through time. At the species level, we found no evidence of convergence through time, with even a trend towards divergence. Furthermore, spatial variation and environmental heterogeneity were found to remain constant through time. These results confirm our hypothesis. At the trait level, limited niches occur, only filled by species having the appropriate traits, resulting in a clear deterministic model of assembly. Species identity, on the contrary, has no role in this niche filling. The first appropriate species to reach a restoration site will be most likely the ones that get established, resulting in divergence of the species composition among restored grasslands.  相似文献   

15.
Conflicting hypotheses predict how traits mediate species establishment and community assembly. Traits of newly establishing individuals are predicted to converge, or be more similar to the resident, preexisting community, when the biotic or abiotic environment favors a single best phenotype, but are predicted to diverge when trait differences reduce competitive interactions. We tested these competing hypotheses using transplant seedlings in an old‐field environment, and assessed the contribution of inter‐ and intra‐specific transplant trait variation to community‐level patterns. Using a soil moisture gradient and resident plant removals, we determined when traits of newly‐establishing plants converge or diverge from the resident community by calculating community weighted mean traits for transplant and resident communities. We saw evidence of environmentally‐ and competitively‐driven trait shifts that resulted in both trait convergence and divergence from the resident community, whose traits reflect the combined effects of both drivers. Leaf dry matter content (LDMC) of transplants diverged in the presence of competition, whereas plant height and stem‐specific density (SSD) showed the opposite pattern, converging with the resident community in their presence. Specific leaf area (SLA) shifted with competition but did not reflect resident community SLA. All transplant traits were influenced by soil moisture, often in an interaction with competition, indicating that the strength of convergence or divergence is contingent on the abiotic environment. Intraspecific differences in transplant traits among treatments were evident in three of four traits; intraspecific height and SLA trends mirrored transplant community‐level trends, whereas intraspecific shifts in SSD were distinct from community‐level trends. Our study shows competition between plant species may cause traits of newly establishing plants to converge with the resident community, as frequently as it selects for trait divergence. These opposing effects of competition suggest that it plays a pervasive role in both intraspecific and species‐level trait differences among communities.  相似文献   

16.
It is widely assumed that higher levels of intraspecific variability in one or more traits should allow species to persist under a wider range of environmental conditions. However, few studies have examined whether species that exhibit high variability are found in a wider range of environmental conditions, and whether variability increases the ability of a species to adapt to prevailing ecological gradients. We used four plant functional traits, specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon to nitrogen ratio (C:N) and maximum plant height in 49 species across a strong environmental gradient to answer three questions: 1) is there evidence for ‘high‐variability’ species (that is, species which show high variability in multiple traits, simultaneously)? 2) are species with more variable traits present across a wider range of environmental conditions than less variable species? And 3) whether more variable species show better trait–environment matching to the prevailing abiotic (soil moisture) gradient at the site? We found little evidence for a ‘high‐variability’ species. Variability was correlated for two leaf traits, SLA and LDMC, while variability in leaf traits and plant height were not correlated. We found little evidence that more variable species were present in more diverse conditions: only variation in SLA was correlated with a wider ecological niche breadth. For plant traits along the soil‐moisture gradient, higher variability led to better trait–environment matching in half of measured traits. Overall, we found little support for the existence of ‘high‐variability’ species, but that variability in SLA is correlated with a wider ecological breadth. We also found evidence that variation in traits can improve trait–environment matching, a relationship which may facilitate our understanding ecological breadth along prevailing gradients, and community assembly on the basis of traits.  相似文献   

17.
Understanding the relationships among community structure, vegetation structure and availability of food resources are a key to unravelling the ecological processes that structure biological communities. In this study, we tested (i) whether the composition of small mammal communities changed across gradients in habitat quality in tropical forest fragments, and (ii) whether any observed change could be explained by the functional traits of species. We sampled 24 trapping grids in fragments of semi‐deciduous forest, in each of two 6‐month periods. We considered each trapping grid as a sampling unit, for which we collected three datasets: an environmental matrix (vegetation structure and food resource availability), the abundance of small mammal species (community structure) and a matrix of functional traits (ecological and morphological traits which express tolerance to habitat disturbance and trophic guild). We used an RLQ approach to evaluate the association between traits and environmental gradients. Forest‐specialist and scansorial–arboreal species were associated with more complex habitat that had greater litter and canopy cover and more fallen logs. In relation to trophic guilds, granivore (fruit seeds), insectivorous and omnivorous species were also associated with higher complexity habitat, while frugivores were associated with shrub cover and availability of fruits. We conclude that functional traits (habitat use, use of vertical strata and diet) provide valuable insights into the distribution of small mammals along gradients of habitat quality in tropical forest fragments. We highlight that communities studies in fragmented landscapes should investigate the different components of biodiversity not only in landscape‐scale but also in habitat scale. Abstract in Portuguese is available with online material.  相似文献   

18.
19.
Aim To investigate whether trait–habitat relations in biological communities converge across three global regions. The goal is to assess the role of habitat templets in shaping trait assemblages when different assembly mechanisms are operating and to test whether trait–habitat relations reflect a common evolutionary history or environmental trait filters. Location Guiana Shield, South America; Upper Guinea Forest Block, West Africa; Borneo rain forests, Southeast Asia. Methods We compared large anuran amphibian data sets at both the regional and cross‐continental scale. We applied a combination of three‐table ordinations (RLQ) and permutation model‐based multivariate fourth‐corner statistics to test for trait–habitat relationships at both scales and used phylogenetic comparative methods to quantify phylogenetic signal in traits that enter these analyses. Results Despite the existence of significant trait–habitat links and congruent trait patterns, we did not find evidence for the existence of a universal trait–habitat relationship at the assemblage level and no clear sign for cross‐continental convergence of trait–habitat relations. Patterns rather varied between continents. Despite the fact that a number of traits were conserved across phylogenies, the phylogenetic signal varied between regions. Trait–habitat relations therefore not only reflect a common evolutionary history, but also more recently operating environmental trait filters that ultimately determine the trait composition in regional assemblages. Main conclusions Integrating trait–habitat links into analyses of biological assemblages can enhance the predictive power and general application of species assembly rules in community and macroecology, particularly when phylogenetic comparative methods are simultaneously applied. However, in order to predict trait composition based on habitat templets, trait–habitat links cannot be assumed to be universal but rather have to be individually established in different regions prior to model building. Only then can direct trait‐based approaches be useful tools for predicting fundamental community patterns.  相似文献   

20.
The use of trait‐based approaches to detect effects of land use and climate change on terrestrial plant and aquatic phytoplankton communities is increasing, but such a framework is still needed for benthic stream algae. Here we present a conceptual framework of morphological, physiological, behavioural and life‐history traits relating to resource acquisition and resistance to disturbance. We tested this approach by assessing the relationships between multiple anthropogenic stressors and algal traits at 43 stream sites. Our “natural experiment” was conducted along gradients of agricultural land‐use intensity (0–95% of the catchment in high‐producing pasture) and hydrological alteration (0–92% streamflow reduction resulting from water abstraction for irrigation) as well as related physicochemical variables (total nitrogen concentration and deposited fine sediment). Strategic choice of study sites meant that agricultural intensity and hydrological alteration were uncorrelated. We studied the relationships of seven traits (with 23 trait categories) to our environmental predictor variables using general linear models and an information‐theoretic model‐selection approach. Life form, nitrogen fixation and spore formation were key traits that showed the strongest relationships with environmental stressors. Overall, FI (farming intensity) exerted stronger effects on algal communities than hydrological alteration. The large‐bodied, non‐attached, filamentous algae that dominated under high farming intensities have limited dispersal abilities but may cope with unfavourable conditions through the formation of spores. Antagonistic interactions between FI and flow reduction were observed for some trait variables, whereas no interactions occurred for nitrogen concentration and fine sediment. Our conceptual framework was well supported by tests of ten specific hypotheses predicting effects of resource supply and disturbance on algal traits. Our study also shows that investigating a fairly comprehensive set of traits can help shed light on the drivers of algal community composition in situations where multiple stressors are operating. Further, to understand non‐linear and non‐additive effects of such drivers, communities need to be studied along multiple gradients of natural variation or anthropogenic stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号