首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 565 毫秒
1.
Disturbances can alter persistence trajectories of restored ecosystems. Resprouting is a common response of plants to disturbances such as fire or herbivory. Therefore, understanding a plant's resprouting response can inform successful restoration. We investigated patterns and drivers of resprouting following fire in fire-prone Banksia woodlands restored after sand mining in the Mediterranean-climate region of Western Australia. We applied experimental fire to samples of nine species with different resprouting types (rhizome, root crown, root sucker and lignotuber) across a 4- to 27-year-old restoration chronosequence. We investigated the influence of pre-fire plant size, restoration age and soil conditions on resprouting success, defined by: (i) the probability of resprouting (measured ~5 months after fire), (ii) the probability of surviving the first summer and, (iii) vigour (both measured ~12 months post-fire). We found that the probability of initial resprouting was high across most species, but summer survival was lower but comparable to that in other post-mining restored ecosystems following fire. Generally, pre-fire plant size did not influence probability of resprouting, while size and soil conditions were important for two species survival. Pre-fire plant size was a significant predictor of vigour for all species with soil conditions influencing four species. Restoration age significantly influenced survival of three species. However, as our models explained low amounts of variation in probabilities of resprouting and survival (R2 = <0.11), other factors influencing resprouting success remain unidentified. Resprouting response to fire disturbance in restored Banksia woodlands are species and resprouter type specific, with plant size and soil conditions potentially more informative for understanding responses to disturbances than restoration age alone.  相似文献   

2.
The resprouting response of different sized Banksia oblongifolia lignotubers (genets) was followed in two field experiments. In the first, the density and speed of resprouting, and the growth in length of the leading shoot from each lignotuber in response to fire and to the time elapsed since the last fire was monitored for 18 months after fire and clipping treatments. In the second, sizes of bud banks were estimated by repeatedly clipping new shoots from individual lignotubers. Density of resprouting (shoots dm?2 lignotuber) decreased with increasing lignotuber size, and the length of the leading shoot increased. The direct effect of fire was to reduce shoot density by about 75%. The speed of resprouting (time taken by a cohort of shoots to reach 50% of their peak density) was similar after fire and clipping, but leading shoots grew significantly longer after fire. The elapsed time since lignotubers were last burnt did not influence their density of resprouting, but it did influence the speed of resprouting. Shoots from clipped lignotubers that had burnt 3 years earlier took about 90 days to each 50% of their peak density while shoots on lignotubers last burnt 5 and 17 years earlier took about 40 days. Death of shoots was unrelated to crowding in any stand. More lignotubers from the oldest unburnt stand were grazed by herbivores. The number of buds converted into shoots after successive clippings was surprisingly small; for most lignotubers this reserve was less than three times the size of their standing crop of shoots. In general, the smaller lignotubers carried a higher proportion of dormant buds in relation to their standing crop of shoots. About 30% of buds remained dormant after the first clipping and about 10% after the second and third clippings. Evidence suggests that buds are replaced within 6 months of fire. No lignotubers survived four clippings over 15 months.  相似文献   

3.
In fire‐prone landscapes, differences in post‐fire regeneration by resprouting between species or sites could be far more important in explaining vegetation physiognomy and composition than seed regeneration. This is the first study exploring the relative contribution of tree resprouts and seeds to post‐fire crown volume in the Chaco Serrano forest of South America. Additionally, we compare the resprouting response among species and quantify post‐fire changes in tree composition among sites. We established 290 permanent plots distributed in three sites affected by wildfires in 2005. For all tree species in all plots we recorded survival of every individual 1 year after the fire; at the plot level, we recorded the above‐ground tree volume before and 3 years after the fire. Resprouting from the base was the main resprouting type. Survival varied between species from 73% to 100% for native species and from 7% to 100% for non‐natives. Before the fire, crown volume was similar in the three sites, and was completely lost after the fire in 92% of the plots. Three years after the fire, between 8% and 58% of crown volume was recovered. The ratio of crown recovery because of resprouts and seedlings was 1562:1. Tree composition exhibited few changes because of the high post‐fire survival of most native species. We conclude that in the semiarid Chaco Serrano ecosystem tree species regenerate mainly by resprouting. This regeneration mode should be taken into account to better understand post‐fire successional pathways of these forests, their management and the restoration of burnt forest areas.  相似文献   

4.
Abstract. It has been proposed that resprouting after a disturbance would be favoured under conditions of low soil resource availability. In lignotuberous plants of Mediterranean‐type areas, successful resprouting after disturbances such as fire depends on the size of the lignotuber, but little is known about the role of soil resources in determining the relative size of this organ. In this work we tested whether the relative size of the lignotuber in the resprouting shrub Erica australis is related to the availability of soil resources. At each of 13 different sites in Spain, 10 plants were chosen and the sizes of their various parts (above‐ and below‐ground) measured. Additionally, at each site we evaluated soil fertility, foliar N and P concentrations and plant water potential in the middle of the summer. The relationships between lignotuber dimensions and the various plant parts were assessed. In all cases, significant differences between sites were found indicating consistent differences in lignotuber size across the range of plant sizes. This was particularly the case when lignotuber dimensions were expressed as a function of foliar biomass. Lignotuber dimensions relative to foliar biomass were positively correlated with soil pH and negatively with plant water potentials in midsummer. There were, however, no clear relationships between lignotuber relative dimensions and soil N and P contents or other measures of site productivity. In summary, lignotubers were not smaller at more productive sites, in fact they were relatively larger at sites where soils were less acidic, but where plant water conditions were less favourable. These findings contradict predictions made based on current theory on the role of soil fertility allocation to resprouting.  相似文献   

5.
In ecosystems subject to regular canopy fires, woody species have evolved two general strategies of post‐fire regeneration. Seeder species are killed by fire and populations regenerate solely by post‐fire recruitment from a seed bank. Resprouter species survive fire and regenerate by vegetative regrowth from protected organs. Interestingly, the abundance of these strategies varies along environmental gradients and across regions. Two main hypotheses have been proposed to explain this spatial variation: the gap dependence and the environmental‐variability hypotheses. The gap‐dependence model predicts that seeders are favoured in sparse vegetation (vegetation gaps allowing effective post‐fire recruitment of seedlings), while resprouters are favoured in densely vegetated sites (seedlings being outcompeted by the rapid crown regrowth of resprouters). The environmental‐variability model predicts that seeders would prevail in reliable rainfall areas, whereas resprouters would be favoured in areas under highly variable rainfall that are prone to severe dry events (leading to high post‐fire seedling mortality). We tested these two models using distribution data, captured at the scale of quarter‐degree cells, for seeder and resprouter species of two speciose shrub genera (Aspalathus and Erica) common in fire‐prone fynbos ecosystems of the mediterranean‐climate part of the Cape Floristic Region. Contrary to the predictions of the gap‐dependence model, species number of both resprouters and seeders increased with values of the Normalized Difference Vegetation Index (a widely used surrogate for vegetation density), with a more marked increase for seeders. The predictions of the environmental‐variability hypothesis, by contrast, were not refuted by this study. Seeder and resprouter species of both genera showed highest richness in environments with high rainfall reliability. However, with decreasing reliability, seeder numbers dropped more quickly than those of resprouters. We conclude that the environmental‐variability model is better able to explain the abundance of woody seeder and resprouter species in Southern Hemisphere fire‐prone shrublands (fynbos and kwongan) than the gap‐dependence model.  相似文献   

6.
The primary goal of restoration is to create self‐sustaining ecological communities that are resilient to periodic disturbance. Currently, little is known about how restored communities respond to disturbance events such as fire and how this response compares to remnant vegetation. Following the 2003 fires in south‐eastern Australia we examined the post‐fire response of revegetation plantings and compared this to remnant vegetation. Ten burnt and 10 unburnt (control) sites were assessed for each of three types of vegetation (direct seeding revegetation, revegetation using nursery seedlings (tubestock) and remnant woodland). Sixty sampling sites were surveyed 6 months after fire to quantify the initial survival of mid‐ and overstorey plant species in each type of vegetation. Three and 5 years after fire all sites were resurveyed to assess vegetation structure, species diversity and vigour, as well as indicators of soil function. Overall, revegetation showed high (>60%) post‐fire survival, but this varied among species depending on regeneration strategy (obligate seeder or resprouter). The native ground cover, mid‐ and overstorey in both types of plantings showed rapid recovery of vegetation structure and cover within 3 years of fire. This recovery was similar to the burnt remnant woodlands. Non‐native (exotic) ground cover initially increased after fire, but was no different in burnt and unburnt sites 5 years after fire. Fire had no effect on species richness, but burnt direct seeding sites had reduced species diversity (Simpson's Diversity Index) while diversity was higher in burnt remnant woodlands. Indices of soil function in all types of vegetation had recovered to levels found in unburnt sites 5 years after fire. These results indicate that even young revegetation (stands <10 years old) showed substantial recovery from disturbance by fire. This suggests that revegetation can provide an important basis for restoring woodland communities in the fire‐prone Australian environment.  相似文献   

7.
Summary Laurel Sumac (Rhus laurina) is a dominant member of the coastal chaparral community of southern California that survives periodic burning by wildfires by resprouting from a lignotuber (root crown). We investigated the physiological basis for resprouting by comparing shoot elongation, leaf nitrogen content, tissue water status, leaf conductance to water vapor diffusion, and photosynthetic rates of post-fire R. laurina to those of adjacent unburned shrubs. Resprouts had higher rates of shoot elongation, leaf conductance, and photosynthesis than mature, unburned shrubs. Leaf nitrogen contents were elevated in burned shrubs even though their leaves developed interveinal chlorosis. A comparison of soil water potential to predawn water potential indicated that roots of R. laurina remain active below 2 m during the first summer drought after wildfire. Our results support the hypothesis that lignotubers not only contain dormant buds that develop into aerial shoots after wildfire but they also supply nutrient resources that enhance shoot elongation. Because R. laurina is relatively sensitive to drought, yet very successful in its rapid recovery after fire, maintaining an active root system after shoot removal may be the primary function of the massive lignotuber formed by this species.  相似文献   

8.
The capacity of many plant species to resprout in fire-prone shrublands is thought to engender persistence, yet management concerns exist for the long-term persistence of some resprouting species given anthropogenic impacts including shortened fire intervals, long periods of fire exclusion, and/or fires of increasingly high severity. We explored the potential demographic effects of different fire interval regimes on lignotuberous resprouter species using the last fire interval for 36 sites (33 experimental fires, 3 wildfires) in biodiverse SW Australian shrublands, spanning an interval range of 3–42 years. Mortality and regrowth 1 year following the last fire was assessed for >7,000 tagged individuals from 20 shrub and sub-shrub species. Using generalized linear mixed effect models, we estimated the influence of fire interval (and selected fire and environmental covariates) on mortality and regrowth rates across all species, and individually for the four most common species. The overall model, as well as the models for three of the four most common species (Banksia attenuata, Melaleuca leuropoma, and M. systena, but not Hibbertia hypericoides) supported the hypothesis of increased mortality at short and long fire intervals, most likely due to total non-structural carbohydrate (TNC) and bud-bank limitation, respectively. However, no relationship between regrowth rate and fire interval was detected, suggesting that increased mortality at short (3–5 year) fire intervals may not be due solely to resource (TNC) limitation. Results show that lignotuberous resprouters are potentially vulnerable to population decline through attrition of mature plants under both shortened and lengthened fire interval regimes.  相似文献   

9.
Question: What are the effects of fire season and intensity on resprouting of different root‐crown bearing shrub species in second‐growth Pinus palustris (longleaf pine) savannas? Location: northern Florida and eastern Louisiana, USA. Methods: In Florida, quadrats were burned biennially either during the dormant season or the growing season. In Louisiana, we applied intensity treatments to quadrats by manipulating ground‐cover fuels, just prior to biennial growing season fires. Maximum fire temperatures were measured, and stem densities were censused before and after fires in both regions. Results: After dormant season fires in Florida, stem densities were seven times greater than initial levels for Hypericum spp. In contrast, growing season fires reduced densities of H. brachyphyllum by 65%, but did not change densities of H. microsepalum. Only resprouting of H. microsepalum decreased with increased fire intensity. In Louisiana, fire intensity influenced Ilex vomitoria, but not Quercus spp. Following fires, stem densities oil. vomitoria were five times greater in fuel removal than fuel addition areas. Conclusions: Past use of dormant season fires likely contributed to increased abundances of some species of root‐crown bearing shrubs observed today in old‐growth savannas. Reintroduction of growing season fires will be effective in maintaining or decreasing stem densities, depending on species and fuel type. Genet mortality and stem density reductions appear most likely in areas at localized scales where tree falls and needle coverage create hotspots in Pinus palustris savannas.  相似文献   

10.
Aim Building on a substantial literature addressing the fire responses of woody plants, particularly under mediterranean climates, we assess the extent to which fire persistence traits can be used to predict vegetation responses to fire regime changes in fire‐prone arid and savanna landscape settings. Location Australia, applying data from arid central to monsoonal northern regions (11–26° S, 129–138° E). Methods With reference to a substantial sub‐continental floristics dataset, we first assigned the fire response (obligate seeder, resprouter) and seedbank persistence (transient, dormant) of rapid and longer‐maturing (> 3 years) woody taxa. Using logistic regression, we then modelled the proportions of taxa possessing these traits as a function of mean annual rainfall (highly correlated with fire frequency) and terrain roughness (a measure of topographic variability) in 0.25° × 0.25° and 1° × 1° grid cells. Separate assessments were undertaken with datasets for 1264 sclerophyll and 236 rain forest taxa. Results This woody flora is characterized by taxa exhibiting mostly resprouting and dormant seedbank traits that promote site persistence. While numbers of obligate seeder and resprouter taxa were related positively to both rainfall and roughness, the relative abundance of both sclerophyll and rain forest obligate seeders decreased significantly with rainfall. The relative abundance of sclerophyll (especially long‐lived) obligate seeders alone increased with topographic roughness. The proportion of taxa with transient seedbanks increased with rainfall in resprouters generally, and in rain forest obligate seeders alone. Main conclusions We find that resprouters are favoured on more productive, fire‐prone sites, and obligate seeders are favoured in less productive, more fire‐protected settings. Seedbank persistence responses are more variable. These findings concur generally with theoretical constructs, and support comparable assessments in Australian and other fire‐prone systems ranging from mediterranean to boreal environments. Our observations illustrate that resprouting and obligate seeding syndromes, but not necessarily seedbank persistence, are useful predictors of vegetation responses to changing fire regime conditions at large landscape scales.  相似文献   

11.
The role of fire in governing rainforest–eucalypt forest ecotone dynamics is of theoretical interest and has conservation management implications. Several eucalypt forests in the Wet Tropics of Australia have an endangered status due to extensive conversion to rainforest. Rainforest plants are known to survive occasional low intensity fires in the eucalypt forest ecotone. However, the ability of rainforest plants to survive frequent fires remains untested. The timing of rainforest expansion is also a subject of interest, and is generally considered to be delayed until fire has been absent for several years. We used 14 years of data collected across 13 plots in the Wet Tropics of north‐eastern Australia to test predictions regarding rainforest seedling recruitment and post‐fire regenerative capacity. The 13 plots received different numbers of fires, between zero and five, over the 14‐year study. The recruitment of new rainforest plants in the ecotone was most abundant in the initial year after fire. If this post‐fire pulse of recruitment is left undisturbed, it can facilitate the subsequent germination of additional rainforest species. The removal of grass cover, whether temporarily in the immediate post‐fire environment or once a developing rainforest mid strata shades out grasses, appears crucial to abundant rainforest recruitment. A variety of tropical rainforest species can persist under a frequent fire regime through resprouting. The difference in the mode of resprouting, between ground‐level coppicing rainforest plants and canopy resprouting eucalypt forest trees, is the critical mechanism that causes regular fire to maintain an open structure in eucalypt forests. The inability of rainforest species to maintain their height when fires fully scorch their crowns, temporarily resets the forest's open structure and delays the rainforest's ability to dominate through shading out grasses to transform the ecosystem into a closed forest.  相似文献   

12.
Most research analyzing nonstructural carbohydrate (NSC) concentrations on resprouter species in fire-controlled ecosystems has concentrated on how NSC concentrations recover immediately after fire. However, we know little of the effect of long periods without fire on NSC concentrations. In order to assess the effect of different periods of time-since-fire on resprouter species, we studied carbohydrate concentrations (total [NSC], soluble sugars [SS] and nonsoluble sugars [NSS]) in five resprouting species with contrasting trends of abundance across a chronosequence of time-since-fire (0.5-40 yr) in Florida. Carbohydrate concentrations were highest in species with specialized reserve organs. [SS] was mainly explained by factors related to plant size, whereas time-since-fire was the main factor explaining [NSS]. Changes in [NSS] and [NSC] were correlated with the time-since-fire abundance patterns. Variation in [NSS] carbohydrates can be related to the structural development of vegetation, with only those species capable of accessing full light able to accumulate carbohydrates, whereas subordinate plants show reductions in the [NSS] carbohydrate fractions. In areas with long intervals between fires, this carbohydrate reduction could affect subsequent postfire resprouting vigour, although this remains to be confirmed.  相似文献   

13.
Fire is central to the ecology of Mediterranean‐type climate ecosystems, but little is known about the fire ecology of succulent plants therein. This study investigated the fire ecology of an arborescent succulent monocot, Kumara plicatilis (L.) G. D. Rowley (Asphodelaceae), a Cape fynbos endemic. Habitat suitability was assessed to determine whether the species tolerates or ‘avoids’ fire, and fire survival traits (bark thickness and tissue water content) were measured. The population size structure and density of three K. plicatilis populations were assessed after natural fires, and resprouting potential was investigated. Kumara plicatilis adopts a dual fire survival strategy, occupying rocky sites to ‘avoid’ fire and possessing morphological features that afford fire tolerance, e.g. well‐protected apical meristems and thick corky bark. Bark thickness of burned individuals in situ was similar to unburned plants, suggesting that K. plicatilis bark provides effective insulation against fire. Mortality rates were 64%, 40% and 11%, and decreased as rock cover at the population level increased. All three populations showed reduced plant density post‐fire, with greater density reductions associated with lower rock cover. Small plants appear most vulnerable to fire damage due to lower absolute bark thickness and plant heights within the flame zone. Kumara plicatilis is an apical sprouter, recovering after fire or mechanical stem damage by onward growth from surviving stem apices, rather than resprouting. Post‐fire population recovery therefore likely depends on inter‐fire recruitment.  相似文献   

14.
Aim Forest ecosystems dominated by fire‐sensitive species could suffer shifts in composition under altered crown fire regimes mediated by climate change. The aims of this study were to: (1) study the spatio‐temporal patterns and the climatic distribution of fires in Scots pine (Pinus sylvestris) forests during the last 31 years in north‐eastern Spain, (2) evaluate the climatic vulnerability to fire of these forests in Spain, (3) analyse the regeneration of Scots pine after fire, and (4) predict the mid‐term maintenance or replacement of Scots pine in burned areas. Location Catalonia (north‐eastern Spain): the southern distribution limit of Scots pine. Methods We characterized the spatio‐temporal and the climatic distribution of fires that occurred in Catalonia between 1979 and 2009. We used a generalized linear model to characterize the climatic vulnerability to fire of Scots pine in the whole of Spain. We assessed the regeneration of the species after crown fires in nine burned areas in Catalonia. The resulting data were integrated into a stochastic matrix model to predict the mid‐term maintenance or replacement of Scots pine in burned areas. Results During the last three decades, Scots pine forests distributed in dry sites were most affected by fire. Our assessment of the vulnerability to fire of Scots pine forests in Spain as a whole, based on climatic and topographical variables, showed that 32% of these forests are vulnerable to fire, and that this proportion could increase to 66% under a conservative climate change scenario. Field data showed almost no regeneration of Scots pine after crown fires, and a limited capacity to recolonize from unburned edges, even in relatively old fires, with 90% of recruits located in the first 25 m from the edge. This process could be delayed by the elapsed time for new recruits to achieve reproductive maturity, which we estimated to be c. 15 years. Finally, our matrix model predicted the replacement of burned Scots pine forests by oak (Quercus sp.) forests, shrublands or mixed resprouter forests. Main conclusions Increased vulnerability to fire of Scots pine forests under future, warmer conditions may result in vegetation shifts at the southern edge of the distribution of the species.  相似文献   

15.
The genus Erica L., with more than 600 species, and a high number of endemics, represents the most remarkable example of floristic diversity in the Cape Floristic Region (CFR). It is largely confined to nutrient-poor, acidic, sandy soils, being one of the most characteristic element of fynbos. The ability to survive fires, resprouting from a lignotuber, is a common trait among Euro-mediterranean Erica species. In contrast, resprouting is fairly uncommon among ericas in the CFR (less than 10%). Most of them are killed by fire, regenerating only but readily by seed germination. An extensive survey on the resprouting ability of South African Erica species was carried out and the pattern of geographical distribution of resprouters and seeders in the CFR was determined. The geographical distribution of these two regeneration classes was related to a climatic gradient of seasonality along the CFR. A pattern of higher proportions of resprouter species towards the mediterranean, strongly seasonal northwestern CFR and the non-seasonal eastern CFR and summer rainfall area outside the CFR was identified. The number of resprouter species reaches a maximum in the eastern CFR and is lower in the southwestern CFR despite the overall higher concentration of species in this subregion. Summer drought strongly influences the effectiveness of post-fire regeneration and growth (i.e. new recruits plus survivors) of Erica species, and is the major selective force accounting for the pattern of distribution of seeders and resprouters in the CFR. A mild mediterranean climate with reliable autumn-winter rains and a short summer drought, typical of the mountain areas of the southwestern CFR, favours recruitment of seeders but hampers recruitment of resprouters. Resprouter species persist and become dominant under harsh conditions for recruitment (severe summer drought) and would coexist with seeders under situations of no summer stress. Diversification is associated with seeder lineages. Hence, number of seeder species will be higher than number of resprouters, especially in the southwestern CFR, where favourable conditions for recruitment allow a massive concentration of seeder species, many of them narrow endemics.  相似文献   

16.
Question: What changes in species composition and cover have occurred in chaparral as a function of fire history across an ecoregion? Location: San Diego County, California, USA. Methods: Stands in which 40 mid‐elevation chaparral vegetation plots (each 400 m2 in area) were located in the 1930s were resurveyed in 2001. We stratified the stands into Infrequently versus Frequently burned (0–1 versus 2 or more fires recorded in the 91‐yr period), and Immature versus Mature (ã31 yr versus >31 yr since last fire), resulting in four groups. Ten stands were randomly selected from each of these groups for survey. Results: There were no major shifts in life form composition, e.g., live oak trees were not invading chaparral that had experienced little or no fire, nor were subshrubs or herbaceous species replacing shrubs in areas that had experienced more frequent fires. However, there was a notable increase in the frequency of the subshrub Eriogonum fasciculatum across all fire history groups. In the mature stands with infrequent fire, average cover of resprouting shrubs increased (from 72 to 91%) and cover of obligate seeding shrubs (species with fire‐cued germination) decreased (from 21 to 6%) significantly. Mature stands with frequent fire showed a significant decrease in resprouter cover (from 87 to 80%) and increase in obligate seeders (from 10 to 16%). Conclusions: While the tremendous changes in land use in southern California have been predicted to cause shifts in chaparral composition, these shifts are difficult to detect because species longevity and fire cycles are on the order of decades to a century. In this study, the expected trends could only be detected in groups that were mature at the time of the second survey.  相似文献   

17.
Abstract Fire is often used as a management tool in fire‐prone communities to reduce fuel loads with the intention of reducing the severity and extent of unplanned fires, often resulting in the increased occurrence of fire in the dry sclerophyll vegetation of Australia. This study examined the effects of fire frequency (length of the inter‐fire interval) on the reproductive output of seven plant species in the Proteaceae, including obligate seeding shrubs (Hakea teretifolia, Petrophile pulchella), resprouting shrubs (Banksia spinulosa, Isopogon anemonifolius, Lambertia formosa) and resprouting trees (Banksia serrata, Xylomelum pyriforme). Reproductive output (measured as either number of confructescences or follicles) and relative size were estimated for 100 individuals at each of five sample sites, covering a range of past fire frequencies over 26 years including repeated short inter‐fire intervals. Patterns in reproductive output (after standardizing for size) were related to the life‐history attributes of the species. In areas that had experienced short inter‐fire intervals, obligate seeders had greater reproductive output compared with longer intervals, and the reproductive output of resprouting shrubs was less. Fire frequency did not affect reproductive output of the resprouting trees. The decreased reproductive output of the resprouting shrubs could be due to the allocation of resources to regrowth following fire rather than to reproduction. It is less clear what process resulted in the increased reproductive output of obligate seeders in high fire frequency areas, but it could be due to the most recent fires being more patchy in the areas experiencing shorter inter‐fire intervals, or it may have resulted from the selection for early reproduction in the high fire frequency areas. These results highlight the need to take into account past fire frequency at a site, in addition to time since the last fire, when planning prescribed fires.  相似文献   

18.
We examined postfire regeneration of chaparral shrubs during an intense drought. This study focused on the demography and physiology of shrub species that resprout from a basal lignotuber following fire. We found significant levels of resprout mortality when intense drought occurred in the year following fire during the period of shrub recovery. Three of the seven sampled resprouting species had the greatest or near greatest levels of mortality ever recorded when compared to previous studies. Most shrub mortality occurred during the drought after individuals had resprouted (i.e. individuals survived fire, resprouted and then subsequently died). Physiological measurements of species with high mortality suggested that resprout stems were highly embolized and xylem hydraulic conductivities were close to zero during the peak of the drought. In addition, lignotubers of two of the three species experiencing high mortality were depleted of starch. Population densities of most shrub species declined after the drought compared with their prefire levels, with the exception of one drought tolerant obligate seeding species. Resprouting shrub species may deplete their carbohydrate reserves during the resprouting process, making them particularly vulnerable to drought because of the need to transpire water to acquire the CO2 that is used to supply energy to a large respiring root system. Drought appears to interact with fire by altering postfire shrub recovery and altering species abundances and composition of chaparral communities.  相似文献   

19.
Questions: How does the time interval between subsequent stand‐replacing fire events affect post‐fire understorey cover and composition following the recent event? How important is fire interval relative to broad‐ or local‐scale environmental variability in structuring post‐fire understorey communities? Location: Subalpine plateaus of Yellowstone National Park (USA) that burned in 1988. Methods: In 2000, we sampled understorey cover and Pinus contorta density in pairs of 12–yr old stands at 25 locations. In each pair, the previous fire interval was either short (7–100 yr) or long (100–395 yr). We analysed variation in understorey species richness, total cover, and cover of functional groups both between site pairs (using paired t‐tests) and across sites that experienced the short fire intervals (using regression and ordination). We regressed three principal components to assess the relative importance of disturbance and broad or local environmental variability on post‐fire understorey cover and richness. Results: Between paired plots, annuals were less abundant and fire‐intolerant species (mostly slow‐growing shrubs) were more abundant following long intervals between prior fires. However, mean total cover and richness did not vary between paired interval classes. Across a gradient of fire intervals ranging from 7–100 yr, total cover, species richness, and the cover of annuals and nitrogen‐fixing species all declined while the abundance of shrubs and fire‐intolerant species increased. The few exotics showed no response to fire interval. Across all sites, broad‐scale variability related to elevation influenced total cover and richness more than fire interval. Conclusions: Significant variation in fire intervals had only minor effects on post‐fire understorey communities following the 1988 fires in Yellowstone National Park.  相似文献   

20.
Summary Using data from three fires in northeastern Spain, we tested a condition necessary to support the idea that fire has been a factor in the evolution of the resprouting habit: populations of all resprouting species within a community should show high levels of genet survival after fires and show a low coefficient of variation. Species with high mean survival values were:Quercus ilex L.,Phillyrea latifolia L., andViburnum tinus L., with 88, 86 and 83% survival respectively; these groups had resprouts emerging from rootcrowns. Then followedArbutus unedo L. (75%),Pistacia lentiscus L. (73%),Erica arborea L. (77%),Erica multiflora L. (57%) andJuniperus oxycedrus L. (55%). This last group had resprouts from lignotubers or burls. These two groups also differed in the variability around the mean: the first showed a lower coefficient of variation, 6–12, and the second ranged from 19 to 26. Slope exposure had no significant influence on the process of resprouting, but soil depth did, with precipitation as a covariate. In the shallow soil category, the difference in genet survival between southern and northern exposures was 14% (71% vs. 57%); while the difference in the deep soil category was low, 5% (87% vs. 82%). There was no significant interaction. The component of variance for soils was larger than that for species-specific effects; substantial overlap of the within-species variance indicated that species responded as if they were a single hypothetical population, in which most of the variation in chances of survival was due to the soil conditions. The possession of the resprouting habit did not ensure a high performance. Hence, we find weak support for fire as a factor in the evolution of the resprouting habit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号