首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Falong Lu 《遗传学报》2018,45(4):183-184
正The genetic information of a human being is encoded in the genomic DNA of about 3 billion base pairs.Every new individual starts from a one-cell zygote,or called fertilized egg,carrying genetic and epigenetic information from the parents.The developmental process from one single cell to a whole organism depends on the differential regulation of the genetic information encoded  相似文献   

9.
10.
11.
12.
13.
Entire eyes were transplanted from fetal rats into the brains of blind adults. In most cases, grafts placed deep within the brain grew and differentiated, and were found to contain retinal cells when examined histologically. Grafts placed within the cerebral cortex infrequently survived. The grafts were found to be sensitive to light, in that electrical potentials similar to electroretinograms (ERGs) or partial ERGs were evoked by flashes of light. It is concluded that fetal eyes can develop a form of light sensitivity when transplanted to the adult rat brain.  相似文献   

14.
15.
During the lifecycle of many enveloped viruses, a nucleocapsid core buds through the cell membrane to acquire an outer envelope of lipid membrane and viral glycoproteins. However, the presence of a nucleocapsid core is not required for assembly of infectious particles. To determine the role of the nucleocapsid core, we develop a coarse-grained computational model with which we investigate budding dynamics as a function of glycoprotein and nucleocapsid interactions, as well as budding in the absence of a nucleocapsid. We find that there is a transition between glycoprotein-directed budding and nucleocapsid-directed budding that occurs above a threshold strength of nucleocapsid interactions. The simulations predict that glycoprotein-directed budding leads to significantly increased size polydispersity and particle polymorphism. This polydispersity can be explained by a theoretical model accounting for the competition between bending energy of the membrane and the glycoprotein shell. The simulations also show that the geometry of a budding particle leads to a barrier to subunit diffusion, which can result in a stalled, partially budded state. We present a phase diagram for this and other morphologies of budded particles. Comparison of these structures against experiments could establish bounds on whether budding is directed by glycoprotein or nucleocapsid interactions. Although our model is motivated by alphaviruses, we discuss implications of our results for other enveloped viruses.  相似文献   

16.
17.
Phragmoplast-associated kinesin-related protein 2 (PAKRP2) is an orphan kinesin in Arabidopsis thaliana that is thought to transport vesicles along phragmoplast microtubules for cell plate formation. Here, using single-molecule fluorescence microscopy, we show that PAKRP2 is the first orphan kinesin to exhibit processive plus-end-directed motility on single microtubules as individual homodimers. Our results show that PAKRP2 processivity is achieved despite having an exceptionally long (32 residues) neck linker. Furthermore, using high-resolution nanoparticle tracking, we find that PAKRP2 steps via a hand-over-hand mechanism that includes frequent side steps, a prolonged diffusional search of the tethered head, and tight coupling of the ATP hydrolysis cycle to the forward-stepping cycle. Interestingly, truncating the PAKRP2 neck linker to 14 residues decreases the run length of PAKRP2; thus, the long neck linker enhances the processive behavior. Based on the canonical model of kinesin stepping, such a long neck linker is expected to decrease the processivity and disrupt the coupling of ATP hydrolysis to forward stepping. Therefore, we conclude that PAKRP2 employs a noncanonical strategy for processive motility, wherein a long neck linker is coupled with a slow ATP hydrolysis rate to allow for an extended diffusional search during each step without sacrificing processivity or efficiency.  相似文献   

18.
The two most common mechanisms of pupillary screening-pigment migration in arthropod superposition eyes are the cone and longitudinal pigment migration mechanisms. The dynamics of each were investigated by optical modelling and by determining experimentally the relationship between eye glow brightness and screening pigment position within the eyes of two representative insect species: the noctuid moth Agrotis infusa and the dung beetle Copris elphenor. During dark adaptation, in both mechanisms, the screening pigment is contracted distally to expose the proximal half of each crystalline cone. During light adaptation the pigment migrates proximally and reduces light flux in the retina. In the longitudinal mechanism, pigment migrates into the clear zone of the eye. In the cone mechanism, pigment never enters the clear zone and is instead restricted to the proximal half of each crystalline cone: a migrating sleeve of pigment creates a small aperture at the end of the crystalline cone, the area of which depends on the degree of light adaptation. According to the model, the cone mechanism provides a limited range of light attenuation (ca. 0.6 log units) for which both good spatial resolution and accuracy of control are maintained, and within this range attenuation is controlled very finely. Beyond this range, whilst attenuation is still possible, diffraction at the pigment aperture and increasing coarseness of control worsen visual performance significantly. In contrast, the longitudinal mechanism provides a much larger useful range of light attenuation (up to several log units) and maintains reasonable fineness of attenuation control over the entire range (although not as fine as the cone mechanism). The experimental results support the model. An extensive survey of arthropods with superposition eyes reveals that the cone mechanism is almost exclusively possessed by those animals experiencing a narrow range of light intensities, and the longitudinal mechanism by those experiencing a wide range.Dedicated to Professor Rolf Elofsson on the occasion of his retirement from the Chair of Zoology in Lund  相似文献   

19.
20.
Starvation effects for five weeks on energy reserves, oxidative stress and hematological indices in Nile catfish Clarias gariepinus was studied. The low protein level in starved fish may result from the lowering effect of prolonged starvation on protein synthesis rather than due to its degenerating protein. Moreover, the elevated level of serum amino acids may promote gluconeogenesis in liver. In addition, the lipid depletion in starved fish may be related to the preferential uses of lipids as an energy to starve fish. Also, unchanged glycemic level may introduce a potent evidence for the presence of active gluconeogenesis, depending on both amino and fatty acids precursors. Also, kidney and liver showed disturbances in metabolites associated with oxidative damage such as elevations in total peroxide, carbonyl protein and DNA fragmentation; these may cause dysfunction to these organs after five weeks of starvation. Total peroxide, carbonyl protein and DNA fragmentation were significantly increased in gills, liver and kidney by 29.9, 30.9 and 30.5; 83.6, 84.6 and 53.7; 82.4, 43.3 and 75.7%, respectively. Starvation induced severe anemia and loss of body weight in the fish. However, white muscle did not show any oxidative damage after five weeks of starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号