首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
As the climate changes, many long‐term studies have shown that the timing of bird migration is shifting, increasing the need for reliable measures of migratory phenology. Ideally, daily counts of birds at a site are used to calculate the mean arrival date (MAD) but, as this approach is not always possible and is very labour‐intensive, simpler metrics such as first arrival date (FAD) have commonly been used. Here, we examine the relationship between FAD and MAD in 28 summer migrant bird species over a 42‐year period (1970–2011) at Portland Bird Observatory, UK. Although significant correlations between FAD and MAD were detected, relationships were weak, particularly in long‐distance migrants. We suggest that FAD, although a simple and straightforward measure, is not particularly robust as a proxy for overall migratory phenology at a population level.  相似文献   

2.
    
Phenological changes are well documented biological effects of current climate change but their adaptive value and demographic consequences are poorly known. Game theoretical models have shown that deviating from the fitness-maximising phenology can be evolutionary stable under frequency-dependent selection. We study eco-evolutionary responses to climate change when the historical phenology is mismatched in this way. For illustration we model adaptation of arrival dates in migratory birds that compete for territories at their breeding grounds. We simulate climate change by shifting the timing and the length of the favourable season for breeding. We show that initial trends in changes of population densities can be either reinforced or counteracted during the ensuing evolutionary adaptation. We find in total seven qualitatively different population trajectories during the transition to a new evolutionary equilibrium. This surprising diversity of eco-evolutionary responses provides adaptive explanations to the observed variation in phenological responses to recent climate change.  相似文献   

3.
    
Understanding the influence of intrinsic (e.g., age, birth mass, and sex) and habitat factors on survival of neonate white-tailed deer improves understanding of population ecology. During 2002–2004, we captured and radiocollared 78 neonates in eastern South Dakota and southwestern Minnesota, of which 16 died before 1 September. Predation accounted for 80% of mortality; the remaining 20% was attributed to starvation. Canids (coyotes [Canis latrans], domestic dogs) accounted for 100% of predation on neonates. We used known fate analysis in Program MARK to estimate survival rates and investigate the influence of intrinsic and habitat variables on survival. We developed 2 a priori model sets, including intrinsic variables (model set 1) and habitat variables (model set 2; forested cover, wetlands, grasslands, and croplands). For model set 1, model {Sage-interval} had the lowest AICc (Akaike's information criterion for small sample size) value, indicating that age at mortality (3-stage age-interval: 0–2 weeks, 2–8 weeks, and >8 weeks) best explained survival. Model set 2 indicated that habitat variables did not further influence survival in the study area; β-estimates and 95% confidence intervals for habitat variables in competing models encompassed zero; thus, we excluded these models from consideration. Overall survival rate using model {Sage-interval} was 0.87 (95% CI = 0.83–0.91); 61% of mortalities occurred at 0–2 weeks of age, 26% at 2–8 weeks of age, and 13% at >8 weeks of age. Our results indicate that variables influencing survival may be area specific. Region-specific data are needed to determine influences of intrinsic and habitat variables on neonate survival before wildlife managers can determine which habitat management activities influence neonate populations. © 2011 The Wildlife Society  相似文献   

4.
气候变化对鸟类迁徙时间的影响是目前生态学研究的热点问题.本文利用鸟类环志的方法分析了2010至2019年河北秦皇岛两种鸟类春季迁徙时间变化趋势及其差异性,并进一步探讨了差异性的原因.选择环志数量较多的食虫鸟黄眉柳莺(Phylloscopus inornatus)和食谷鸟灰头鹀(Emberiza spodocephala...  相似文献   

5.
This paper analyses the dependence of the first spring arrival dates of short/medium- and long-distance migrant bird species on climate warming in eastern Europe. The timing of arrival of the selected species at the observation site correlates with the North Atlantic Oscillation (NAO) index, air temperature, atmospheric pressure, precipitation and wind characteristics. A positive correlation of fluctuations in winter and spring air temperatures with variations in the NAO index has been established in eastern Europe. Positive winter NAO index values are related to earlier spring arrival of birds in the eastern Baltic region and vice versa—arrival is late when the NAO index is negative. The impact of climate warming on the bird’s life cycle depends on local or regional climate characteristics. We tested the hypothesis that differences in climate indices between North Africa and Europe can influence the timing of spring arrival. Our results support the hypothesis that differences in first spring arrival dates between European populations occur after individuals cross the Sahara. We assume that the endogenous programme of migration control in short/medium-distance migrants synchronises with the changing environment on their wintering grounds and along their migration routes, whereas in long-distance migrants it is rather with environmental changes in the second part of their migratory route in Europe. Our results strongly indicate that the mechanism of dynamic balance in the interaction between the endogenous regulatory programme and environmental factors determines the pattern of spring arrival, as well as migration timing.  相似文献   

6.
Migratory species are of special concern in the face of global climate change, since they may be affected by changes in the wintering area, along the migration route and at the breeding grounds. Here we show that migration and breeding times of a trans‐Saharan migrant, the pied flycatcher Ficedula hypoleuca, closely follow local temperatures along the migration route and at the breeding grounds. Because of differences in long‐term temperature trends of short within‐spring periods, the migration period and the time interval between migration and breeding dates of this species have extended in SW Finland. Temperatures in northern parts of Central Europe have risen at the time when the first migrants arrive there, facilitating their migration northward. Temperatures later in the spring have not changed, and the last individuals arrive at the same time as before. The timing of breeding has not advanced because temperatures at the breeding site after arrival have not changed. These results show that the pied flycatchers can speed up their migration in response to rising temperatures along the migration route. Our results strongly indicate that the effects of climate change have to be studied at the appropriate time and geographical scales for each species and population concerned.  相似文献   

7.
Artifacts of Paleoindians have been found in most if not all of the Plains states; however, documented human skeletal remains from this early period are rare. The Medicine Crow cranium dates by stratigraphy and by the amount of absorbed alpha and beta radiation at between 5,000 and 2,000 B.C. This places this young adult male in the Archaic period and represents the earliest documented human skeletal material from South Dakota. It compares favorably in age with other well documented human skeletons from the Plains area, such as Lansing Man (Kansas) (3579 B.C.). Metrically, (with a cranial index of 76.7) and morphologically the Medicine Crow cranium falls well within the range of other early or middle Archaic skeletons.  相似文献   

8.
Most European migratory birds wintering in sub‐Saharan Africa have anticipated arrival to the breeding areas over the past decades. This phenological change may be ultimately caused by warming of the Northern Hemisphere via evolutionary changes or phenotypic plasticity in migration behavior. First arrival dates are negatively predicted by temperatures upon arrival to the breeding grounds. This seems puzzling, because migrants should be unable to predict weather conditions at long range. Migrants can enjoy diverse fitness benefits from early arriving. However, if weather conditions at destination cannot be predicted, early arrival can also entail severe costs. If meteorological conditions in Europe during breeding covary with those in sub‐Saharan Africa during late winter, long‐distance migrants may have a clue to predict meteorological conditions in their breeding areas while they are still in Africa and adjust their migration schedule consequently, an idea that has never been tested. We analyzed the correlation between March–April temperature anomalies (Tan) in Europe and February Tan in the Sahel and sub‐Sahel, where long‐distance migrants winter or stop‐over. Tan in Africa negatively predicted Tan in Europe, the association being particularly strong (unsigned effect size, zr>0.35) for eastern Sahel and northern and eastern Europe, where the risks of early arrival may be larger. However, the strength of the correlations between Tan in the two continents has declined during the last 25 years; thus, possibly, partly compromising adaptive mechanisms of adjustment of migration. The existence of such climatic connectivity leads to several predictions, including that positive Tan in Africa should delay arrival. Consistent with this prediction, we found that first arrival dates of seven long‐distance migratory species positively covaried with February Tan in Africa. Thus, while wintering, migrants might be able to predict meteorological conditions at the beginning of the breeding season, and phenotypically adjust migration schedules to optimally tune arrival date.  相似文献   

9.
Climate change is affecting the phenology of seasonal events in Europe and the Northern Hemisphere, as shown by several studies of birds’ timing of migration and reproduction. Here, we analyse the long-term (1982–2006) trends of first arrival dates of four long-distance migratory birds [swift (Apus apus), nightingale (Luscinia megarhynchos), barn swallow (Hirundo rustica), and house martin (Delichon urbicum)] and first egg laying dates of two migrant (swift, barn swallow) and two resident species [starling (Sturnus vulgaris), Italian sparrow (Passer italiae)] at a study site in northern Italy. We also addressed the effects of local weather (temperature and precipitation) and a climate index (the North Atlantic Oscillation, NAO) on the interannual variability of phenological events. We found that the swift and the barn swallow significantly advanced both arrival and laying dates, whereas all other species did not show any significant temporal trend in either arrival or laying date. The earlier arrival of swifts was explained by increasing local temperatures in April, whereas this was not the case for arrival dates of swallows and first egg laying dates of both species. In addition, arrival dates of house martins were earlier following high NAO winters, while nightingale arrival was earlier when local spring rainfall was greater. Finally, Italian sparrow onset of reproduction was anticipated by greater spring rainfall, but delayed by high spring NAO anomalies, and swift’s onset of reproduction was anticipated by abundant rainfall prior to reproduction. There were no significant temporal trends in the interval between onset of laying and arrival in either the swift or the barn swallow. Our findings therefore indicate that birds may show idiosyncratic responses to climate variability at different spatial scales, though some species may be adjusting their calendar to rapidly changing climatic conditions.  相似文献   

10.
    
Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this region of their distribution. We evaluated factors influencing greater sage-grouse winter habitat use in North Dakota during 2005–2006 and 2006–2007 and in South Dakota during 2006–2007 and 2007–2008. We captured and radio-marked 97 breeding-age females and 54 breeding-age males from 2005 to 2007 and quantified habitat selection for 98 of these birds that were alive during winter. We collected habitat measurements at 340 (177 ND, 163 SD) sage-grouse use sites and 680 random (340 each at 250 m and 500 m from locations) dependent sites. Use sites differed from random sites with greater percent sagebrush cover (14.75% use vs. 7.29% random; P < 0.001), percent total vegetation cover (36.76% use vs. 32.96% random; P ≤ 0.001), and sagebrush density (2.12 plants/m2 use vs. 0.94 plants/m2 random; P ≤ 0.001), but lesser percent grass cover (11.76% use vs. 16.01% random; P ≤ 0.001) and litter cover (4.34% use vs. 5.55% random; P = 0.001) and lower sagebrush height (20.02 cm use vs. 21.35 cm random; P = 0.13) and grass height (21.47 cm use vs. 23.21 cm random; P = 0.15). We used conditional logistic regression to estimate winter habitat selection by sage-grouse on continuous scales. The model sagebrush cover + sagebrush height + sagebrush cover × sagebrush height ( = 0.60) was the most supported of the 13 models we considered, indicating that percent sagebrush cover strongly influenced selection. Logistic odds ratios indicated that the probability of selection by sage-grouse increased by 1.867 for every 1% increase in sagebrush cover (95% CI = 1.627–2.141) and by 1.041 for every 1 cm increase in sagebrush height (95% CI = 1.002–1.082). The interaction between percent sagebrush canopy cover and sagebrush height (β = −0.01, SE ≤ 0.01; odds ratio = 0.987 [95% CI = 0.983–0.992]) also was significant. Management could focus on avoiding additional loss of sagebrush habitat, identifying areas of critical winter habitat, and implementing management actions based on causal mechanisms (e.g., soil moisture, precipitation) that affect sagebrush community structure in this region. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

11.
The intra- and inter-season complexity of bird migration has received limited attention in climatic change research. Our phenological analysis of 22 species collected in Chicago, USA, (1979–2002) evaluates the relationship between multi-scalar climate variables and differences (1) in arrival timing between sexes, (2) in arrival distributions among species, and (3) between spring and fall migration. The early migratory period for earliest arriving species (i.e., short-distance migrants) and earliest arriving individuals of a species (i.e., males) most frequently correlate with climate variables. Compared to long-distance migrant species, four times as many short-distance migrants correlate with spring temperature, while 8 of 11 (73%) of long-distance migrant species’ arrival is correlated with the North Atlantic Oscillation (NAO). While migratory phenology has been correlated with NAO in Europe, we believe that this is the first documentation of a significant association in North America. Geographically proximate conditions apparently influence migratory timing for short-distance migrants while continental-scale climate (e.g., NAO) seemingly influences the phenology of Neotropical migrants. The preponderance of climate correlations is with the early migratory period, not the median of arrival, suggesting that early spring conditions constrain the onset or rate of migration for some species. The seasonal arrival distribution provides considerable information about migratory passage beyond what is apparent from statistical analyses of phenology. A relationship between climate and fall phenology is not detected at this location. Analysis of the within-season complexity of migration, including multiple metrics of arrival, is essential to detect species’ responses to changing climate as well as evaluate the underlying biological mechanisms.  相似文献   

12.
Protandry models and their application to salmon   总被引:1,自引:0,他引:1  
Mating systems characterized by restricted breeding seasons,male polygamy, and female monogamy are common among animals.In such systems (e.g., butterflies), the earlier emergenceof males than females to breeding areas (protandry) is a typicalphenological pattern. Protandry likely results from a timingstrategy that maximizes mating opportunities by males. In Pacific salmon (Oncorhynchus spp.), males typically arrive at the spawning grounds in advance of females. Using arrival-timing models,I found that under the mate-opportunity hypothesis, the matingsystem of salmon favors protandry. Protandry is predicted undera range of competitive scenarios, and the degree of protandryis especially sensitive to the duration of male spawning activity.Greater protandry is expected with increasing population sexratio (i.e., more males) when there is mate guarding, but lowerprotandry is expected with increasing population sex ratiowhen interference competition among males reduces male longevity.The timing of unequal competitors is expected to be similar,but among years, protandry may be less variable in the bettercompetitor.  相似文献   

13.
Thirty‐four years (1972–2005) of water temperature data and extensive biological observations at Auke Creek, Alaska indicate a general warming trend that affected the native pink salmon (Oncorhynchus gorbuscha) population. Serial environmental records at nearby Auke Bay, Alaska over 46 years show trends of increasing air and sea surface temperatures. Trends of increased total precipitation and earlier date of ice out on nearby Auke Lake also occurred, but not at significant rates. Average water temperatures during the incubation of pink salmon in Auke Creek increased at a rate of 0.03 °C yr?1 over the 34‐year period. For the 1972–2005 broods, midpoints of fry migrations from Auke Creek ranged between April 2 and May 7, and there was a trend of earlier migration of pink salmon fry at a rate of ? 0.5 days yr?1. The migration timing of adult salmon into Auke Creek also showed a trend toward earlier timing. The earlier adult migration combined with warmer incubation temperatures are related to earlier migration of pink salmon fry. If the observed warming trend continues, Auke Creek may become unsuitable habitat for pink salmon. Given the trend for salmon fry to migrate earlier, a larger portion of the population may become mismatched with optimum environmental conditions during their early marine life history. If salmon adults continue to migrate into the creek earlier when water temperatures are commonly high, it will result in increased prespawning mortality.  相似文献   

14.
C. J. Reading 《Oecologia》1998,117(4):469-475
A 19-year study of a common toad population in south Dorset, UK, was carried out between 1980 and 1998. The daily arrival of sexually mature male and female toads at a breeding pond was recorded each year. The timing of the main arrival of toads at the breeding pond was highly correlated with the mean daily temperatures over the 40 days immediately preceding the main arrival. When the temperatures were higher than average, breeding occurred significantly earlier in the year than if they were either average or lower than average. During the study, the toad breeding seasons were early (2–13 February) in 5 years (1989, 1990, 1993, 1995, 1998), late (16–23 March) in 2 years (1986, 1996) and average (25 February–8 March) during the remaining 12 years. Evidence was found suggesting that common toads have a daylength threshold of about 9 h, below which the migration to the breeding pond does not occur. Evidence was also found indicating that common toads in southern England have a threshold temperature for activity of about 6°C and that the onset of breeding activity is highly correlated with the number of days during the 40 days prior to the main arrival at the breeding pond that were at or above this temperature. Predicting the start of the main breeding migration to a pond in any year may be possible by comparing the pattern of the 40-day running mean daily temperatures from 21 December the preceding year with those from previous years when the start of breeding activity is known. Although all five of the earliest recorded toad breeding years occurred during the last 10 years, and were associated with the occurrence of particularly mild winters, a significant trend towards earlier breeding in recent years compared with previous years was not found. Received: 16 July 1998 / Accepted: 14 September 1998  相似文献   

15.
Ecological processes are changing in response to climatic warming. Birds, in particular, have been documented to arrive and breed earlier in spring and this has been attributed to elevated spring temperatures. It is not clear, however, how long-distance migratory birds that overwinter thousands of kilometers to the south in the tropics cue into changes in temperature or plant phenology on northern breeding areas. We explored the relationships between the timing and rate of spring migration of long-distance migratory birds, and variables such as temperature, the North Atlantic Oscillation (NAO) and plant phenology, using mist net capture data from three ringing stations in North America over a 40-year period. Mean April/May temperatures in eastern North America varied over a 5°C range, but with no significant trend during this period. Similarly, we found few significant trends toward earlier median capture dates of birds. Median capture dates were not related to the NAO, but were inversely correlated to spring temperatures for almost all species. For every 1°C increase in spring temperature, median capture dates of migratory birds averaged, across species, one day earlier. Lilac (Syringa vulgaris) budburst, however, averaged 3 days earlier for every 1°C increase in spring temperature, suggesting that the impact of temperature on plant phenology is three times greater than on bird phenology. To address whether migratory birds adjust their rate of northward migration to changes in temperature, we compared median capture dates for 15 species between a ringing station on the Gulf Coast of Louisiana in the southern USA with two stations approximately 2,500 km to the north. The interval between median capture dates in Louisiana and at the other two ringing stations was inversely correlated with temperature, with an average interval of 22 days, that decreased by 0.8 days per 1°C increase in temperature. Our results suggest that, although the onset of migration may be determined endogenously, the timing of migration is flexible and can be adjusted in response to variation in weather and/or phenology along migration routes.  相似文献   

16.
Although there is substantial evidence that Northern Hemisphere species have responded to climatic change over the last few decades, there is little documented evidence that Southern Hemisphere species have responded in the same way. Here, we report that Australian migratory birds have undergone changes in the first arrival date (FAD) and last date of departure (LDD) of a similar magnitude as species from the Northern Hemisphere. We compiled data on arrival and departure of migratory birds in south‐east Australia since 1960 from the published literature, Bird Observer Reports, and personal observations from bird watchers. Data on the FAD for 24 species and the LDD for 12 species were analyzed. Sixteen species were short‐ to middle‐distance species arriving at their breeding grounds, seven were long‐distance migrants arriving at their nonbreeding grounds, and one was a middle‐distance migrant also arriving at its nonbreeding ground. For 12 species, we gathered data from more than one location, enabling us to assess the consistency of intraspecific trends at different locations. Regressions of climate variables against year show that across south‐east Australia average annual maximum and minimum temperatures have increased by 0.17°C and 0.13°C decade?1 since 1960, respectively. Over this period there has been an average advance in arrival of 3.5 days decade?1; 16 of the 45 time‐series (representing 12 of the 24 species studied) showed a significant trend toward earlier arrival, while only one time‐series showed a significant delay. Conversely, there has been an average delay in departure of 5.1 days decade?1; four of the 21 departure time‐series (four species) showed a significant trend toward later departure, while one species showed a significant trend toward earlier departure. However, differences emerge between the arrival and departure of short‐ to middle‐distance species visiting south‐east Australia to breed compared with long‐distance species that spend their nonbreeding period here. On average, short‐ to middle‐distance migrants have arrived at their breeding grounds 3.1 days decade?1 earlier and delayed departure by 8.1 days decade?1, thus extending the time spent in their breeding grounds by ~11 days decade?1. The average advance in arrival at the nonbreeding grounds of long‐distance migrants is 6.8 days decade?1. These species, however, have also advanced departure by an average of 6.9 days decade?1. Hence, the length of stay has not changed but rather, the timing of events has advanced. The patterns of change in FAD and LDD of Australian migratory birds are of a similar magnitude to changes undergone by Northern Hemisphere species, and add further evidence that the modest warming experienced over the past few decades has already had significant biological impacts on a global scale.  相似文献   

17.
    
Monarch butterflies (Danaus plexippus) undergo an iconic multi-generational migration, traveling thousands of kilometers from the summer breeding grounds in southern Canada to overwintering sites in central Mexico. This migration phenomena can be affected by climate change, which may have important implications on fitness and ultimately populations status. We investigated the long-term trends in fall migration phenology of monarchs using a 25-year dataset collected along the coast of Lake Erie in Ontario, Canada. We also investigated local long-term trends in weather covariates that have the potential to influence migration phenology at this site. Patterns in standardized daily counts of monarchs were compared with local weather covariates using two methods (i.e., monthly averages and moving windows) to assess difference in outputs between analytical approaches. Our results suggest that monarch migration timing (migration midpoint, average peak, first peak, and late passage) and weather covariates have been consistent over time, in direct contrast to a similar study in Cape May, New Jersey, which showed a significant increase in both fall temperature and a 16- to 19-day shift in monarch migration timing. Furthermore, our results differed between analytical approaches. With respect to annual variability in air temperature, our monthly average analysis suggested that for each degree increase in September air temperature, late season passage would advance 4.71 days (±1.59 SE, p = .01). However, the moving window analysis suggested that this result is likely spurious and found no significant correlations between migration timing and any weather covariates. Importantly, our results caution against extrapolating the effects of climate change on the migration phenology of the monarch across study regions and the need for more long-term monitoring efforts to better understand regional drivers of variability in migration timing.  相似文献   

18.
    
Socioeconomic development, adaptive capacity of the population, and demographic conditions across the states of South Asia make it more vulnerable to climate change. South Asia is daily going to be more vulnerable to climate change and climatic variability. This region is facing multiple challenges in terms of climate change, dilapidation of ecosystems, and food insecurity. Climate is the primary determining factor for agricultural output, which unswervingly influences food production across the globe. South Asia is mainly an agricultural foundation based region and thus the economy of these regions directly depends on agriculture and agricultural production. Due to the extensive dependence on natural assets for thriving, it makes the people of this region more vulnerable to climate change. This region is now under serious risk from sea-level rising and growing incidences of extreme events such as flash floods, enhanced temperature, drought, salinity, cyclones, storms, landslides, and irregularity of precipitation. These abiotic stresses continuously disturb plant growth and productivity. It is now the time to take urgent action on these issues towards a sustainable, inclusive and resource efficient way to overcome this. In this review, we summarize the overall situation of climate change in the South Asian countries and their adverse consequences on plants, and upcoming challenges towards a sustainable production.  相似文献   

19.
    
Determining how different populations adapt to similar environments is fundamental to understanding the limits of adaptation under changing environments. Snowshoe hares (Lepus americanus) typically molt into white winter coats to remain camouflaged against snow. In some warmer climates, hares have evolved brown winter camouflage—an adaptation that may spread in response to climate change. We used extensive range-wide genomic data to (1) resolve broad patterns of population structure and gene flow and (2) investigate the factors shaping the origins and distribution of winter-brown camouflage variation. In coastal Pacific Northwest (PNW) populations, winter-brown camouflage is known to be determined by a recessive haplotype at the Agouti pigmentation gene. Our phylogeographic analyses revealed deep structure and limited gene flow between PNW and more northern Boreal populations, where winter-brown camouflage is rare along the range edge. Genome sequencing of a winter-brown snowshoe hare from Alaska shows that it lacks the winter-brown PNW haplotype, reflecting a history of convergent phenotypic evolution. However, the PNW haplotype does occur at low frequency in a winter-white population from Montana, consistent with the spread of a locally deleterious recessive variant that is masked from selection when rare. Simulations of this population further show that this masking effect would greatly slow the selective increase of the winter-brown Agouti allele should it suddenly become beneficial (e.g., owing to dramatic declines in snow cover). Our findings underscore how allelic dominance can shape the geographic extent and rate of convergent adaptation in response to rapidly changing environments.  相似文献   

20.
The life cycles of plants and animals are changing around the world in line with the predictions originated from hypotheses concerning the impact of global warming and climate change on biological systems. Commonly, the search for ecological mechanisms behind the observed changes in bird phenology has focused on the analysis of climatic patterns from the species breeding grounds. However, the ecology of bird migration suggests that the spring arrival of long‐distance migrants (such as trans‐Saharan birds) is more likely to be influenced by climate conditions in wintering areas given their direct impact on the onset of migration and its progression. We tested this hypothesis by analysing the first arrival dates (FADs) of six trans‐Saharan migrants (cuckoo Cuculus canorus, swift Apus apus, hoopoe Upupa epops, swallow Hirundo rustica, house martin Delichon urbica and nightingale Luscinia megarhynchos), in a western Mediterranean area since from 1952 to 2003. By means of multiple regression analyses, FADs were analysed in relation to the monthly temperature and precipitation patterns of five African climatic regions south of the Sahara where species are thought to overwinter and from the European site from where FADs were collected. We obtained significant models for five species explaining 9–41% of the variation in FADs. The interpretation of the models suggests that: (1) The climate in wintering quarters, especially the precipitation, has a stronger influence on FADs than that in the species' potential European breeding grounds. (2) The accumulative effects of climate patterns prior to migration onset may be of considerable importance since those climate variables that served to summarize climate patterns 12 months prior to the onset of migration were selected by final models. (3) Temperature and precipitation in African regions are likely to affect departure decision in the species studied through their indirect effects on food availability and the build‐up of reserves for migration. Our results concerning the factors that affect the arrival times of trans‐Saharan migrants indicate that the effects of climate change are more complex than previously suggested, and that these effects might have an interacting impact on species ecology, for example by reversing ecological pressures during species' life cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号