首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun S  Jin D  Shi P 《Annals of botany》2006,97(1):97-107
BACKGROUND AND AIMS: The leaf size-twig size spectrum is one of the leading dimensions of plant ecological variation, and now it is under development. The purpose of this study was to test whether the relationship between leaf size and twig size is isometric or allometric, and to examine the relationship between plant allometric growth and life history strategies in the spectrum. METHODS: Leaf and stem characters-including leaf and stem mass, total leaf area, individual leaf area, stem cross-sectional area, leaf number and stem length-at the twig level for 59 woody species were investigated along an altitudinal gradient on Changbaishan Mountain in the temperate zone of China. The environmental gradient ranges from temperate broad-leaved mixed forest at low altitude, to conifer forest at middle altitude, and to sub-alpine birch forest at high altitude. The scaling relationships between stem cross-sectional area and stem mass, stem mass and leaf mass, and leaf mass and leaf area at the twig level were simultaneously determined. KEY RESULTS: Twig cross-sectional area was found to have invariant allometric scaling relationships with the stem mass, leaf mass, total leaf area and individual leaf area, all with common slopes being significantly larger than 1, for three altitudinal-zoned vegetation types under investigation. However, leaf mass was found to be isometrically related to stem mass and leaf area along the environmental gradient. Based on the predictions of previous models, the exponent value of the relationship between twig cross-sectional area and total leaf area can be inferred to be 1.5, which falls between the confidence intervals of the relationship at each altitude, and between the confidence intervals of the common slope value (1.17-1.56) of this study. This invariant scaling relationship is assumed to result from the fractural network and/or developmental constraints of plants. The allometric constants (y-intercepts) of the relationships between the stem cross-sectional area and leaf area (both total leaf area and individual leaf area) were found to decrease significantly along the altitudinal gradient. This suggests that the species would support less leaf area at a given twig cross-sectional area with increasing environmental stress. CONCLUSIONS: This study demonstrated that plants respond to the environmental gradient by changing the y-intercepts of the relationship between leaf size-twig size, while keeping the exponent value of the allometric relationship as an invariant constant. The allometric growth in the twig size-leaf size spectrum is related to many other components of plant life history strategy, including the well established life history trade-off between efficiency and safety in the hydraulic transport of water.  相似文献   

2.
3.
4.
 A hypothesized relationship between seed weight and leaf size was investigated for 58 diverse British (semi-)woody species. Interspecific variation in leaf size of adult plants corresponded allometrically with interspecific variation in the weight of an infructescence (seed-bearing inflorescence). The relationship between seed size and leaf size of adult plants was triangular. The corners of the triangle were interpreted in terms of ecological strategy. Medium-sized infructescences, small seeds and large leaves were seen among medium-sized, fast-growing, earlier-successional, mostly deciduous shrubs and trees; small infructescences, small seeds and small leaves mostly among low, slow-growing evergreens from stress-prone, proclimax habitats; and large infructescences, large seeds and large leaves among slow-growing, later-successional trees of potential competitive vigour. The hypothesis that the combination of large seeds and small leaves is allometrically unlikely was supported by the data. The roles of ontogeny and taxonomic relatedness in the seed size-leaf size relationship were examined by correlative and taxonomic analyses of seed, plant and leaf size during the unfolding of the life history from seed through two seedling phases to adulthood. Deciduous versus evergreen leaf habit was a source of deviation from the otherwise linear allometric relationships during ontogenetic development, none of which were, individually, confounded significantly with taxonomy. Received: 2 March 1998 / Accepted: 15 October 1998  相似文献   

5.
Ülo Niinemets 《Plant Ecology》1996,124(2):145-153
Variation in leaf size (area per leaf) and leaf dry weight per area (LWA) in relation to species shade- and drought-tolerance, characterised by Ellenberg's light (ELD) and water demand (EWD) values, respectively, were examined in 60 temperate woody taxa at constant relative irradiance. LWA was independent of plant size, but leaf size increased with total plant height at constant ELD. Canopy position also affected leaf morphology: leaves from the upper crown third had higher LWA and were larger than leaves from the lower third. Leaf size and LWA were negatively correlated, and leaf size decreased and LWA increased with decreasing species shade-tolerance. Mean LWA was similar for trees and shrubs, but trees had larger leaves than shrubs. Furthermore, all relationships were altered by plant growth-form: none of the qualitative tendencies was significant for trees. This implies the considerably lower plasticity of foliar parameters in trees than those in shrubs. Accordingly, shade-tolerance of trees, having relatively constant leaf structure, may be most affected by the variability in biomass partitioning and crown geometry which influence foliage distribution and spacing and finally determine canopy light absorptance. Alteration of leaf form and investment pattern for construction of unit foliar surface area which change the efficiency of light interception per unit biomass investment in leaves, is a competitive strategy inherent to shrubs. EWD as well as wood anatomy did not control LWA and leaf size, though there was a trend of ring-porous tree species to be more shade-tolerant than diffuse-porous trees. Since ring-porous species are more vulnerable to cavitation than diffuse-porous species, they may be constrained to environments where irradiances and consequently evaporative demand is lower.  相似文献   

6.
7.
The structural causes of variation in leaf mass per area, and of variations in leaf structure accounted for by leaf habit and life form, were explored in a set of laboratory-grown seedlings of 52 European woody species. The leaf traits analysed included density, thickness, saturated mass/dry mass, and leaf nitrogen per mass and per area. Other traits described the anatomy of leaves, most of them relating to the lamina (proportions of palisade and spongy parenchymata, epidermis, air space and sclerified tissues, expressed as volume per leaf area, and per-cell transversal areas of epidermis and parenchymata), and another referring to the mid rib (transversal section of sclerified tissues). Across the whole set of species leaf mass per area was correlated with leaf density but not with thickness, and this was confirmed by taxonomic relatedness tests. Denser leaves corresponded with greater proportion of sclerified tissues in the lamina, smaller cells and lower water and N contents, but no relation was found with the proportion of air space in the lamina. Taxonomic relatedness analysis statistically supported the negative association of leaf density with saturated to dry leaf mass ratio. Thicker leaves also exhibited greater volume per leaf area and greater individual cell area in each of the tissues, particularly parenchyma. Mean leaf mass per area and leaf thickness were lower in deciduous than in evergreen species, but no significant differences in leaf density, proportion of sclerified tissues in the lamina or cell area were found between the two groups. Leaf mass per area was higher in trees and subshrubs than in shrubs and climbers-plus-scramblers, this rank being equal for leaf density and proportion of sclerified tissues in the lamina, and reversed for cell area. Given the standardised environment and ontogenetic phase of the seedlings, we conclude that variation in leaf structure and anatomy among species and species groups has a strong genetic basis, and is already expressed early in the development of woody plants. From an ecological viewpoint, we can interpret greater leaf mass per area across this species set as greater allocation to support and defence functions, as shown predominantly by species from resource-poor environments. Received: 16 August 1999 / Accepted: 29 March 2000  相似文献   

8.
The Metabolic Ecology Model predicts that tree diameter ( D ) growth ( dD/dt ) scales with D 1/3. Using data on diameter growth and height–diameter relationships for 56 and 40 woody species, respectively, from forests throughout New Zealand, we tested one prediction and two assumptions of this model: (i) the exponent of the growth–diameter scaling relationship equals 1/3 and is invariant among species and growth forms, (ii) small and large individuals are invariant in their exponents and (iii) tree height scales with D 2/3. We found virtually no support for any prediction or assumption: growth–diameter scaling exponents varied substantially among species and growth forms, correlated positively with species' maximum height, and shifted significantly with increasing individual size. Tree height did not scale invariantly with diameter. Based on a quantitative test, violation of these assumptions alone could not explain the model's poor fit to our data, possibly reflecting multiple, unsound assumptions, as well as unaccounted-for variation that should be incorporated.  相似文献   

9.
Changes in leaf mass per area (LMA), nitrogen content on a mass-basis (Nm) and on an area basis (Na) with relative irradiance were assessed in leaves of eight temperate species harvested at different depths in a canopy. Relative irradiance (GSF) at the points of leaf sampling was estimated by hemispheric photographs. There was a strong species-dependent positive relationship between LMA and GSF for all species. Shade-tolerant species such as Fagus sylvatica showed lower LMA for the same GSF than less tolerant species as Quercus pyrenaica or Quercus petraea. The only evergreen species in the study, Ilex aquifollium, had the highest LMA, independent of light environment, with minimum values much higher than the rest of the broad-leaved species studied. There was no relation between Nm and GSF for most species studied and only a very weak relation for the relative shade-intolerant species Q. pyrenaica. Within each species, the pattern of Na investment with regard to GSF was linked mainly to LMA. At the same relative irradiance, differences in Na among species were conditioned both by the LMA–GSF relationship and by the species Nm value. The lowest Nm value was measured in I. aquifollium (14.3 ± 0.6 mg g–1); intermediate values in Crataegus monogyna (16.9 ± 0.6 mg g–1) and Prunus avium (19.1 ± 0.6 mg g–1) and higher values, all in a narrow range (21.3 ± 0.6 to 23 ± 0.6 mg g–1), were measured for the other five species. Changes in LMA with the relative irradiance were linked both to lamina thickness (LT) and to palisade/spongy parenchyma ratio (PP/SP). In the second case, the LMA changes may be related to an increase in lamina density as palisade parenchyma involves higher cell packing than spongy parenchyma. However, since PP/SP ratio showed a weak species-specific relationship with LMA, the increase in LT should be the main cause of LMA variation.  相似文献   

10.
干旱和湿润生境中主要优势树种叶片功能性状的比较   总被引:1,自引:0,他引:1  
以云南南部的沟谷雨林(湿润生境)和干热河谷萨瓦纳(savanna)稀树灌丛(干旱生境)中共31种主要优势木本植物为材料,研究了叶片主要功能性状单位面积叶干重(LMA)、单位干重氮含量(Nmass)和单位干重最大净光合速率(Amass)在2个生境中的差异及各性状间的关系。结果表明:在物种水平上,干旱和湿润生境中各树种的LMA值分别为46.88~178.63和45.35~93.16g·m-2;Amass值分别为48.12~176.65和71.38~265.76nmol·g-1·s-1;Nmass值分别为11.8~36.71和12.98~31.78mg·g-1;在群落水平上,干旱生境中LMA显著高于湿润生境,而Amass显著低于湿润生境,Nmass在2个生境中差异不显著;在群落尺度上,干旱生境中LMA与Nmass和Amass均呈显著负相关;在2生境中Nmass与Amass均呈显著正相关。同一生境下不同植物对环境的适应策略有差异,但各性状间的相关关系具有趋同性;从湿润到干旱生境,植物由快速生长转向以提高资源利用效率为主的适应策略。  相似文献   

11.
Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.  相似文献   

12.
Leaf nitrogen content per area (Narea) is a good indicator of assimilative capacity of leaves of deciduous broad-leaved trees. This study examined the degrees of increase in Narea in response to canopy openings as leaf mass per area (LMA) and leaf nitrogen content per mass (Nmass) in saplings of eight deciduous broad-leaved tree species in Hokkaido, northern Japan. Five of the species were well-branched species with a large number of small leaves (lateral-growth type), and the other three species were less-branched species with a small number of large leaves (vertical-growth type). The degrees of increase in Narea were compared between the two crown types. In closed-canopy conditions, leaves of the vertical-growth species tended to have a lower LMA and higher Nmass than those of the lateral-growth species, which resulted in similar Narea for both. LMA increased in canopy openings in the eight species, and the degrees of increase were not largely different between the lateral- and vertical-growth species. On the contrary, Nmass was unchanged in canopy openings in the eight species. As a result, Narea of each species increased in canopy openings in proportion to the increase in LMA, and the degrees of increase in Narea were similar in the lateral- and vertical-growth species. Therefore, this study showed that the degrees of increase in Narea were not correlated with the crown architecture (i.e., the lateral- and vertical-growth types).  相似文献   

13.
武夷山不同海拔黄山松枝叶大小关系   总被引:1,自引:0,他引:1  
对武夷山自然保护区不同海拔黄山松叶片面积、叶片数量、小枝长度及小枝直径等性状进行测定,分析不同海拔黄山松枝-叶大小间的权衡关系.结果表明: 随海拔升高,黄山松小枝的叶片数量、小枝长度、小枝直径、出叶强度及茎截面积逐渐增大,单叶面积呈逐渐减小趋势;不同海拔黄山松小枝出叶强度与单叶面积均呈显著负相关,不同海拔黄山松小枝茎截面积与总叶面积呈显著正相关;不同海拔黄山松小枝长度、小枝直径与出叶强度呈显著负相关,与单叶面积、叶片数量及总叶面积均呈显著正相关.为提高竞争优势或是资源利用效率,低海拔黄山松倾向于在短枝上着生量少但单叶面积大的针叶,而高海拔黄山松趋向于在长枝上着生量大但单叶面积小的针叶,这体现出不同海拔梯度黄山松小枝的资源利用策略及枝叶间生物量分配的权衡机制.  相似文献   

14.
15.
Current global change is inducing heterogeneous warming trends worldwide, with faster rates at higher latitudes in the Northern Hemisphere. Consequently, tundra vegetation is experiencing an increase in growth rate and uneven but expanding distribution. Yet, the drivers of this heterogeneity in woody species responses are still unclear. Here, applying a retrospective approach and focusing on long-term responses, we aim to get insight into growth trends and climate sensitivity of long-lived woody species belonging to different functional types with contrasting growth forms and leaf habits (shrub vs. tree and deciduous vs. evergreen). A total of 530 samples from 7 species (common juniper, dwarf birch, woolly willow, Norway spruce, lodgepole pine, rowan, and downy birch) were collected in 10 sites across Iceland. We modelled growth trends and contrasted yearly ring-width measurements, filtering in high- and low-frequency components, with precipitation, land- and sea-surface temperature records (1967–2018). Shrubs and trees showed divergent growth trends, with shrubs closely tracking the recent warming, whereas trees, especially broadleaved, showed strong fluctuations but no long-term growth trends. Secondary growth, particularly the high-frequency component, was positively correlated with summer temperatures for most of the species. On the contrary, growth responses to sea surface temperature, especially in the low frequency, were highly diverging between growth forms, with a strong positive association for shrubs and a negative for trees. Within comparable vegetation assemblage, long-lived woody species could show contrasting responses to similar climatic conditions. Given the predominant role of oceanic masses in shaping climate patterns in the Arctic and Low Arctic, further investigations are needed to deepen the knowledge on the complex interplay between coastal tundra ecosystems and land-sea surface temperature dynamics.  相似文献   

16.
权衡关系是生活史对策理论的基础, 叶大小-数量的权衡关系对理解叶大小进化具有重要的意义。该研究以单叶面积和单叶片干重表示叶大小, 用小枝干重和小枝茎干重表示小枝大小, 采用标准化主轴估计(standardized major axis estimation, SMA)和系统独立比较分析(phylogenetically independent contrast analysis, PIC)的方法, 对浙江省清凉峰自然保护区3个不同海拔落叶阔叶木本植物当年生小枝内的叶大小与数量间的关系进行研究。结果显示, 无论叶大小和小枝大小是用面积或干重表示, 在每个海拔, 叶大小与出叶强度均存在显著的等速负相关关系, 表明在落叶阔叶木本植物中发现的叶大小与出叶强度之间的权衡关系在不同生境物种中是普遍存在的, 植物在叶大小方面的种间变化, 可能不是自然选择的直接产物, 而是叶片数量变化权衡关系的一个副产物。不同海拔间的比较显示, 高海拔物种的叶面积或干重与出叶强度相关关系的y轴截距比中、低海拔物种小, 表明在出叶强度一定的情况下, 高海拔物种比低海拔物种具有更小的叶大小。与高海拔物种相比, 中海拔物种的共同斜率沿共同主轴有一个向上的位移, 表明中海拔物种比高海拔物种具有更大的叶大小, 但出叶强度更小。这些结果表明生境对叶大小-数量的权衡关系具有显著的影响, 中海拔生境具有更适宜植物生长的气候及养分条件, 而高海拔的低温等不利影响使得叶片变小。  相似文献   

17.
本文以胡杨(Populus euphratica Oliv.)为研究对象,采用标准化主轴回归估计(SMA)方法探讨了种群叶片大小(单叶面积、单叶质量)与出叶强度(基于小枝质量、茎质量、茎体积)的异速生长关系对地下水埋深梯度(Groundwater depth,GWD)的响应及其变化规律.结果显示:随GWD增加,胡杨当年...  相似文献   

18.
19.
Background and Aims Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood.Methods Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence.Key Results Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study.Conclusions The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes.  相似文献   

20.
Question: Do coexisting plant life forms differ in overall phenology, leaf traits and patterns of leaf litterfall? Location: Patagonian Monte, Chubut Province, Argentina. Methods: We assessed phenology, traits of green and senesced leaves and the pattern of leaf litterfall in 12 species of coexisting life forms (perennial grasses, deciduous shrubs, evergreen shrubs). Results: We did not identify differences in phenology, leaf traits and patterns of leaf litterfall among life forms but these attributes contrasted among species. Independent of the life form, the maintenance of green leaves or vegetative growth during the dry season was mostly associated with leaves with high leaf mass per area (LMA) and high concentration of secondary compounds. Low LMA species produced low litterfall mass with low concentration of secondary compounds, and high N concentration. High LMA species produced the largest mass of leaf litterfall. Accordingly, species were distributed along two main dimensions of ecological variation, the dimension secondary compounds in leaves ‐ length and timing of the vegetative growth period (SC ‐ VGP) and the dimension leaf mass per area ‐ leaf litterfall mass (LMA ‐ LLM). Conclusions: Phenology, leaf traits and leaf litterfall varied among species and overlapped among life forms. The two dimensions of ecological variation among species (SC ‐ VGP, LMA ‐ LLM) represent distinct combinations of plant traits or strategies related to resource acquisition and drought tolerance which are reflected in the patterns of leaf litterfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号