首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spider genital morphology usually provides the best characters for taxonomy. Furthermore, functional genital morphology helps to understand the evolution of complex genitalia and their role in the context of sexual selection. The genital systems of most haplogyne spider families are poorly investigated with respect to their morphology. The present study investigates the female genitalia of the oonopids Oonops pulcher, Oonopinus kilikus, and Pseudotriaeris sp. by means of light microscopy and SEM. The male palps are briefly described. Females of O. pulcher store spermatozoa in an anterior and a posterior receptaculum (PRe). The genitalia resemble the primitive dysderoid genitalia supporting the hypothesis that the subfamily Oonopinae contains more basal oonopids. In O. kilikus, the anterior receptaculum is reduced to a sclerite. Spermatozoa are stored in a PRe. The receptacula of Pseudotriaeris sp. are reduced to sclerites. Spermatozoa in the uterus internus indicate that fertilization happens there or in the ovary. The anterior sclerite might serve females to lock the uterus during copulation as suggested for other gamasomorphines. The male palp of O. kilikus is simple, whereas the palps of O. pulcher and Pseudotriaeris sp. appear more complex. Complicated structures on the palp of Pseudotriaeris sp. indicate that males exert copulatory courtship.  相似文献   

3.
This study describes the female genitalia of the tetrablemmid spiders Brignoliella acuminata, Monoblemma muchmorei, Caraimatta sbordonii, Tetrablemma magister, and Ablemma unicornis by means of serial semi‐thin sections and scanning electron microscopy and compares the results with previous findings on Indicoblemma lannaianum. Furthermore, the male palps and chelicerae are briefly described. The general vulval organization of females is complex and shows similarities in all of the investigated species. The copulatory orifice is situated near the posterior margin of the pulmonary plate. The opening of the uterus externus lies between the pulmonary and the postgenital plate. Paired copulatory ducts lead to sac‐like receptacula. Except for A. unicornis, the male emboli of all investigated species are elongated and thread‐like. However, they are too short to reach the receptacula. Hence, the spermatozoa have to be deposited inside the copulatory ducts. The same situation was also found in I. lannaianum. Females of this species store sperm encapsulated in secretory balls in their receptacula. The secretion is produced by glands adjoining the receptacula. The presence of paired fertilization ducts and spermatozoa in the uterus internus suggested that fertilization takes place internally in I. lannaianum. Secretory balls in the receptacula are found in all of the investigated species in this study, showing that sperm are stored in the same way. The place of fertilization may also be identical since dark particles, presumably spermatozoa, are located in the uterus internus of all investigated species except for T. magister. However, fertilization ducts are only found in B. acuminata and M. muchmorei. A sclerotized central process with attached muscles is present in A. unicornis, M. muchmorei, C. sbordonii and T. magister. Only in A. unicornis does the central process show an internal lumen and hold spermatozoa. In the other species, it could be used to lock the uterus during copulation in order to prevent sperm from getting into it as suggested for certain oonopid species. The uterus externus of all investigated species shows a sclerotized dorsal fold with attached muscles, previously described as “inner vulval plate.” Contractions of the muscles lead to a widening of the dorsal fold, thus creating enough space for the large oocytes to pass the narrow uterus externus. The males of all investigated species have apophyses on their chelicerae. At least in B. acuminata and A. unicornis, where females have paired grooves on the preanal plate, these apophyses allow males to grasp the female during copulation as described for I. lannaianum. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
5.
The genital structures of most spiders are poorly investigated in respect of their functional morphology because the traditional taxonomic practice is to inspect slide-mounted genitalia only. The present study describes the female genitalia of three members belonging to the megadiverse haplogyne spider family Oonopidae by means of histological serial sections, scanning electron microscopy, and X-ray ultramicroscopy. The female genitalia of Neoxyphinus ogloblini, Dysderina sp., and Heteroonops spinimanus are complex and might have evolved under sexual selection by cryptic female choice. However, there is no direct evidence for cryptic female choice in these species based on the results of the present study. In N. ogloblini and Dysderina sp., spermatozoa and secretion are stored in a large receptaculum. Highly elongated gland cells filled with secretory vesicles extend over the receptaculum of N. ogloblini. In addition, sperm are present in the uterus internus of female N. ogloblini and Dysderina sp. The location of fertilization is still unknown for most spiders. One female of Dysderina sp. had sperm in the uterus and ovary strongly suggesting that fertilization in this species takes place in the ovary. An anterior sclerite with attached muscles should serve females to lock the uterus externus during copulation as suggested for other oonopids. The male palp of N. ogloblini shows a simple embolus whereas the embolus of Dysderina sp. is more complicated and accompanied by a cork-screw-shaped conductor. Females of H. spinimanus have an anterior sclerite in which thread-like gland ducts lead. The chitinized posterior diverticulum shows peculiar papillae in its anterior wall. The exact location of sperm storage in H. spinimanus remains unknown since spermatozoa were not present in the anterior sclerite and the posterior diverticulum. The anterior sclerite might be used to lock the uterus externus similar to N. ogloblini and Dysderina sp. H. spinimanus was previously suggested to be parthenogenetic and a male has only been recently associated with this species. The male was not investigated for this study.  相似文献   

6.
The female genital organs of the tetrablemmid Indicoblemma lannaianum are astonishingly complex. The copulatory orifice lies anterior to the opening of the uterus externus and leads into a narrow insertion duct that ends in a genital cavity. The genital cavity continues laterally in paired tube-like copulatory ducts, which lead into paired, large, sac-like receptacula. Each receptaculum has a sclerotized pore plate with associated gland cells. Paired small fertilization ducts originate in the receptacula and take their curved course inside the copulatory ducts. The fertilization ducts end in slit-like openings in the sclerotized posterior walls of the copulatory ducts. Huge masses of secretions forming large balls are detectable in the female receptacula. An important function of these secretory balls seems to be the encapsulation of spermatozoa in discrete packages in order to avoid the mixing of sperm from different males. In this way, sperm competition may be completely prevented or at least severely limited. Females seem to have full control over transferred sperm and be able to express preference for spermatozoa of certain males. The lumen of the sperm containing secretory balls is connected with the fertilization duct. Activated spermatozoa are only found in the uterus internus of females, which is an indication of internal fertilization. The sperm cells in the uterus internus are characterized by an extensive cytoplasm and an elongated, cone-shaped nucleus. The male genital system of I. lannaianum consists of thick testes and thin convoluted vasa deferentia that open into the wide ductus ejaculatorius. The voluminous globular palpal bulb is filled with seminal fluid consisting of a globular secretion in which only a few spermatozoa are embedded. The spermatozoa are encapsulated by a sheath produced in the genital system. The secretions in females may at least partly consist of male secretions that could be involved in the building of the secretory balls or play a role in sperm activation. The male secretions could also afford nutriments to the spermatozoa.  相似文献   

7.
The ovoid seminal receptacula in Peripatus acacioi are located at the junctions of the short paired oviducts with the two horns of the uterus. Associated with each is a tubular funnel that opens into the haemocoel. In P. acacioi, spermatozoa may be stored in the seminal receptacula for several years (Campiglia and Walker '95, J. Morphol. 224:179–198). Observations of the structure of the seminal receptaculum using transmission electron microscopy (TEM) show that there are numerous tracheae within its wall indicating a good oxygen supply. The ultrastructure of the epithelium lining the seminal receptaculum indicates that these cells secrete the material that forms the luminal matrix that surrounds and provides nutrition for the stored spermatozoa. The ducts that interconnect the ovary, seminal receptaculum, funnel, and uterus are all packed with cilia. The structure of the seminal receptaculum and associated parts in the mature virgin female is identical to that of the gravid female, but the luminal matrix does not contain any spermatozoa. J. Morphol. 237:127–136, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
In promiscuous females, sperm ejection from the sperm storage site can be a strong mechanism to influence sperm priority patterns. Sperm dumping is reported from different animals including birds, insects, and humans. In spiders, it has been documented for four species including the oonopid Silhouettella loricatula. Oonopidae are a diverse spider family comprising many species with peculiar female genitalia. Especially in species where studies of mating behavior are difficult, morphological investigations of the genitalia help to understand their function and evolution. In the present study, the genitalia of the oonopids Myrmopopaea sp., Grymeus sp., and Lionneta sp. are investigated by means of histological serial sections and scanning electron microscopy (SEM). The results are compared with previous findings on S. loricatula. In Myrmopopaea sp. and Grymeus sp., the same morphological components are present that are involved in sperm dumping in S. loricatula. Inside the receptaculum, sperm are enclosed in a secretory sac which can be moved to the genital opening and dumped during copulation by muscle contractions. The female genitalia of Lionneta sp. are asymmetric. They show the same characteristics as S. loricatula but all the investigated females were unmated. The results strongly suggest that sperm dumping occurs in Myrmopopaea sp., Grymeus sp., and Lionneta sp. and happens by the same mechanism as in S. loricatula. Sperm dumping might even be common within a clade of oonopids. As in S. loricatula, the sperm transfer forms in the investigated species consist of several spermatozoa. Papillae with unknown function occur on the receptacula of all females.  相似文献   

9.
The female genital system of the oonopid Silhouettella loricatula is astonishingly complex. The genital opening is situated medially and leads into an oval receptaculum that is heavily sclerotized except for the ventral half of the posterior wall that appears chitinized only. A large striking sclerite lying in the posterior wall of the uterus externus is attached anteriorly to the receptaculum and continues dorsally into a globular appendix that bears a furrow. The uterus externus shows a peculiar modification in its anterior wall: a paddle-like sclerite with a nail-like posterior process. This sclerite lies opposite to the furrow proceeding in the globular appendix and may serve females to lock the uterus externus by muscle contractions. Massive muscles connect the sclerite with the anterior scutum of the opisthosoma and with two other sclerites that are attached to the receptaculum and serve as attachments for further muscles. Gland cells extend around a pore field of the receptaculum. They produce secretion that encloses spermatozoa in a discrete package (secretory sac) inside the receptaculum. In this way, the mixing of sperm from different males and thus sperm competition may be severely limited or completely prevented. During a copulation in the laboratory the ejection of a secretory sac that most probably contained spermatozoa was observed, indicating sperm dumping in S. loricatula. The ejection of the secretory sac may be caused by female muscle contractions or by male pedipalp movements. The majority of the investigated females have microorganisms in the receptacula that could represent symbionts or infectious agents. The microorganisms can be identified partly as bacteria. They are enclosed in secretion and are always found in the same position inside the receptaculum.  相似文献   

10.
The genital morphology of female Pholcus phalangioidesis examined to clarify the composition of the uterus externus and the place of sperm storage in this species. Two conspicuous pore plates serve as exits for glandular secretion that gets discharged into the uterus externus. The secretion accumulates close to the pore plates and to some extent in the region of the heavily sclerotized valve that separates the uterus externus from the uterus internus. During copulation, the male transfers spermatozoa and male secretions into the female genital tract where they are embedded and stored in the female secretion. As Ph. phalangioidesdoes not possess any separate sperm storage organs such as receptacula seminis, the glandular secretion serves to store and fix the sperm mass in a specific position within the uterus externus itself.  相似文献   

11.
The unusual reproductive biology of many spider species makes them compelling targets for evolutionary investigations. Mating behavior studies combined with genital morphological investigations help to understand complex spider reproductive systems and explain their function in the context of sexual selection. Oonopidae are a diverse spider family comprising a variety of species with complex internal female genitalia. Data on oonopid phylogeny are preliminary and especially studies on their mating behavior are very rare. The present investigation reports on the copulatory behavior of an Orchestina species for the first time. The female genitalia are described by means of serial semi-thin sections and scanning electron microscopy. Females of Orchestina sp. mate with multiple males. On average, copulations last between 15.4 and 23.54 min. During copulation, the spiders are in a position taken by most theraphosids and certain members of the subfamily Oonopinae: the male pushes the female back and is situated under her facing the female's sternum. Males of Orchestina sp. possibly display post-copulatory mate-guarding behavior. The female genitalia are complex. The genital opening leads into the uterus externus from which a single receptaculum emerges. The dorsal wall of the receptaculum forms a sclerite serving as muscle attachment. A sclerotized plate with attached muscles lies in the posterior wall of the uterus externus. The plate might be used to lock the uterus during copulation. The present study gives no direct evidence for cryptic female choice in Orchestina sp. but suggests that sexual selection occurs in the form of sperm competition through sperm mixing.  相似文献   

12.
Osedax is a genus of siboglinid annelids in which the females live on dead vertebrate bones on the seafloor. These females have a posterior end that lies within the bone and contains the ovarian tissue, as well as the “roots” involved with bone degradation and nutrition. The males are microscopic and live as “harems” in the lumen of the gelatinous tube that surrounds the female trunk, well away from the ovary. Females are known to spawn fertilized primary oocytes, suggesting internal fertilization. However, little is known about sperm transfer, sperm storage, or the location of fertilization, and the morphology of the female reproductive system has not been described and compared with the reproductive systems of other siboglinids. A 3D‐reconstruction of the ovisac of Osedax showed ovarian tissue with multiple lobes and mature oocytes stored in a “uterus” before being released through the single oviduct. The oviduct emerges as a gonopore on the trunk and travels along the trunk to finally open to the seawater as a thin cylindrical tube among the crown of palps. Light and transmission electron microscopy of mature Osedax sperm revealed elongate heads consisting of a nucleus with helical grooves occupied by mitochondria. In contrast to other Siboglinidae, Osedax sperm are not packaged into spermatophores or spermatozeugmata, and Osedax females lack a discrete region for sperm storage. Transmission electron microscopy and fluorescence microscopy allowed detection of sperm associated with ovarian tissue of the female ovisac of four different Osedax species. This provides the first evidence for the site of internal fertilization in Osedax. A heart body was found in the circulatory system, as seen in other siboglinids and some other annelids. The possible presence of nephridia in the anterior ovisac region was also documented. These morphological features provide new insights for comparing the regionalization of Osedax females in relation to other siboglinids.  相似文献   

13.
Anatomy and ultrastructure of the female and male reproductive system inAcarus siro L. were investigated by light and electron microscopy. The female system consists of paired ovaries of nutrimentary type in which oogonia and oocytes are connected by bridges with a large central cell. The oviducts empty into the uterus, which passes into preoviporal duct lined bycuticle, and opening as a longitudinal slit (oviporus). An elongated accessory gland composed of one type of secretory cell is located along each oviduct. The copulatory opening occurs at the posterior margin of the body and leads, via the inseminatory canal, to the receptaculum seminis, consisting of the basal and saccular part. Both inseminatory canal and basal part of receptaculum seminis are lined by cuticle, whereas the wall of the sac is formed by cells covered only by long, numerous microvilli. The basal part of the receptaculum seminis joins the ovaries via two lumenless transitory cones.The male reproductive system contains paired testes, in which spermatogonia tightly surround the central cell. The proximal part of the paired vasa deferentia serves as a sperm reservoir, while the distal one has a glandular character. An unpaired, cuticle-lined ejaculatory duct opens into the apex of the aedeagus. The single accessory gland is located asymmetrically at the level of, or slightly posterior to, coxae IV.The structure of the genital papillae, which are topographically related to the genital opening in both sexes, is also briefly described.  相似文献   

14.
The functional anatomy of the genitalia of Nemasoma varicorne (Nemasomatidae), Brachyiulus lusitanus, Unciger foehdus and Cylindroiulus boleti (Julidae) was investigated by shock freezing of animals in copula followed by serial semithin sectioning of the engaged genitalia. The species show conspicuous differences in the functional mechanism of their genitalia. In M varicorne and B. lusitanus the vulvae remain within the vulval sac during copulation while in U.foetidus and C. boleti parts of the gonopods (promerite and mesomerite) form clasper-like structures that pull out the vulvae from the vulval sacs. With the exception of C. boleti all investigated species have a 'central funnel' on the vulva which leads into the receptaculum seminis. The sperm-transferring part of the male gonopods (solenomerite) is introduced into this funnel during copulation. In B. lusitanus and C. boleti a projection of the posterior gonopods (end-projection, brachite) fits into a slit anterior to the openings of the receptacula. The results are discussed with regard to sexual selection theory and a hypothesis is proposed that explains the evolutionary change of millipede genitalia by a combination of female choice and sperm competition phenomena.  相似文献   

15.
The receptaculum seminis, opening into the female genital tract, is found only in the metastriate ixodid ticks. An endospermatophore that has been inserted into the female genital aperture at copulation is first stored in the receptaculum seminis, where spermiogenesis is completed before the sperm ascend the oviducts. The receptaculum seminis consists of a simple cuticularized epithelium. Epithelial cells in sexually matured females develop during feeding and become active in secretion. Secretions discharged from epithelial cells are released into the lumen of this organ through the cuticle and may act on the wall of the inserted endospermatophore. The fact that resumption of spermiogenesis (spermateleosis) has already occurred before destruction of the endospermatophore just after copulation suggests that secretions from epithelial cells of the receptaculum seminis are not the trigger of spermateleosis, but a destructive agent of the endospermatophore wall. J Morphol 231:143–147, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Ovoviviparity or viviparity has evolved independently in animals and involves adaptations in females to accommodate developing embryos for a prolonged duration in their bodies, a condition which has likely to have influenced the evolution of the male genitalia. We aimed to ascertain whether the elongated male genitalia of the ovoviviparous free‐living earwig species Marava arachidis (Dermaptera: Spongiphoridae) delivers sperm directly to the female ovaries where fertilization occurs. Males mated coercively with females by grabbing the female antenna with their mouth parts. Although females resisted the mating attempts, pairs mated 3.3 times on average over 15 h. The elongated intromittent organ, known as a virga, was inserted into the long‐tubed spermatheca during insemination. Surgical ectomy of the spermatheca confirmed that sperm migrated from here to the ovaries with a variable delay. A pair of sclerites in the male genitalia frequently inflicted wounds near the spermathecal opening, while the single, thin virga sometimes broke off during mating. However, unlike earwigs bearing a ‘spare’ virga, damage was restricted to the tip of the virga, without which the males could still inseminate the females. We discuss the evolution of the genitalia in this insect in the light of sexual selection and sexual conflict over mating and fertilization.  相似文献   

17.
Abstract The functional anatomy of the extremely complex copulatory organs of the millipede Craspedosoma transsilvanicum Verhoeff, 1897, was investigated by scanning electron microscopy and serial semi-thin sectioning after fixation of the animals by freezing in copula. There is no male organ for sperm transfer which inserts into the receptacula seminis. Sperm secretion is only brushed over the openings of the receptacula by cuticular projections of the anterior gonopods (‘brush’). Other parts of the gonopods (projections of the cheirites, podosternite) bring the brush and the openings of the receptacula in the proper position. Examination of the gonopods from series of Craspedosoma from locations near Vienna showed that there are intermediary specimens between the nominal species C. transsilvanicum and C. alemannicum Verhoeff, 1910. Obviously, a mechanical isolation mechanism, as supposed by Verhoeff, does not exist between these nominal species. At the beginning of a copulation, the male forces the female into the mating position. When touched by males, the females try to evade them by rolling up. The possibilities are discussed that females thereby test the actual fitness of males, and that males use their clasper-like copulatory organs to prevent females from escaping.  相似文献   

18.
Female mating rate is fundamental to evolutionary biology as it determines the pattern of sexual selection and sexual conflict. Despite its importance, the genetic basis for female remating rate is largely unknown and has only been demonstrated in one species. In paternally investing species there is often a conflict between the sexes over female mating rate, as females remate to obtain male nutrient donations and males try to prevent female remating to ensure high fertilization success. Butterflies produce two types of sperm: fertilizing, eupyrene sperm, and large numbers of nonfertile, apyrene sperm. The function of apyrene sperm in the polyandrous, paternally investing green‐veined white butterfly, Pieris napi, is to fill the female’s sperm storage organ thereby reducing her receptivity. However, there is large variation in number of apyrene sperm stored. Here, I examine the genetic basis to this variation, and if variation in number of apyrene sperm stored is related to females’ remating rate. The number of apyrene sperm stored at the time of remating has a genetic component and is correlated with female remating tendency, whereas no such relationship is found for fertilizing sperm. The duration of the nonreceptivity period in P. napi also has a genetic component and is inversely related to the degree of polyandry. Sexual conflict over female remating rate appears to be present in this species, with males using their apyrene sperm to exploit a female system designed to monitor sperm in storage. Ejaculates with a high proportion of nonfertile sperm may have evolved to induce females to store more of these sperm, thereby reducing remating. As a counter‐adaptation, females have evolved a better detection system to regain control over their remating rate. Sexually antagonistic co‐evolution of apyrene sperm number and female sperm storage may be responsible for ejaculates with predominantly nonfertile sperm in this butterfly.  相似文献   

19.
Promiscuous mating systems provide the opportunity for females to bias fertilization toward particular males. However, distinguishing between male sperm competition and active female sperm choice is difficult for species with internal fertilization. Nevertheless, species that store and use sperm of different males in different storing structures and species where females are able to expel all or part of the ejaculates after copulation may be able to bias fertilization. We report a series of experiments aimed at providing evidence of female sperm choice in Euxesta eluta (Hendel), a species of ulidiid fly that expels and consumes ejaculates after copulation. We found no evidence of greater reproductive success for females mated singly, multiply with the same male, or mated multiply with different males. Female E. eluta possesses two spherical spermathecae and a bursa copulatrix for sperm storage, with a ventral receptacle. There was no significant difference in storing more sperm in spermathecae 24 h after copulation than immediately after copulation. Females mated with protein-fed males had greater reproductive success than similar females mated to protein-deprived males. Protein-fed females prevented to consume the ejaculate, retained more sperm when mated to protein-fed males than when mated to protein-deprived males. Our results suggest that female E. eluta can exert control of sperm retention of higher quality males through ejaculate ejection.  相似文献   

20.
Competition between different males'' sperm for the fertilization of ova has led to the evolution of a diversity of characters in male reproductive behaviour, physiology and morphology. Males may increase sperm competition success either by enhancing the success of their own sperm or by negating or eliminating the success of rival sperm. Here, we find that in the flour beetle Tribolium castaneum, the second male to mate gains fertilization precedence over previous males'' sperm and fertilizes approximately two-thirds of the eggs. It is not known what mechanism underlies this pattern of last-male sperm precedence; however, the elongate tubules of the female sperm storage organ may encourage a ''last-in, first-out'' sperm use sequence. Here we present an additional or alternative mechanism of sperm precedence whereby previously deposited sperm are removed from the female tract by the mating male''s genitalia. In addition to providing evidence for sperm removal in T. castaneum, we also show that removed, non-self sperm may be translocated back into the reproductive tracts of new, previously unmated females, where the translocated sperm go on to gain significant fertilization success. We found that, in 45 out of 204 crosses, sperm translocation occurred and in these 45 crosses over half of the offspring were sired by spermatozoa which had been translocated between females on the male genitalia. In the natural environment of stored food, reproductively active T. castaneum adults aggregate in dense mating populations where copulation is frequent (we show in three naturally occurring population densities that copula duration and intermating intervals across three subsequent matings average 1 to 2 min). Selection upon males to remove rival sperm may have resulted in counter-selection upon spermatozoa to survive removal and be translocated into new females where they go on to fertilize in significant numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号