首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Question: Does increasing Festuca canopy cover reduce plant species richness and, therefore, alter plant community composition and the relationship of litter to species richness in old‐field grassland? Location: Southeastern Oklahoma, USA. Methods: Canopy cover by species, species richness, and litter mass were collected within an old‐field grassland site on 16, 40 m × 40 m plots. Our study was conducted during the first three years of a long‐term study that investigated the effects of low‐level nitrogen enrichment and small mammal herbivory manipulations. Results: Succession was altered by an increase in abundance of Festuca over the 3‐yr study period. Species richness did not decline with litter accumulation. Instead, Festuca increased most on species‐poor plots, and Festuca abundance remained low on species‐rich plots. Conclusions: Festuca may act as an invasive transformer‐species in warm‐season dominated old‐field grasslands, a phenomenon associated more with invasions of cool‐season grasses at higher latitudes in North America.  相似文献   

3.
Question: Can the seed bank play a significant role in the restoration of plant communities of dry acidic dune grassland where fire has destroyed Ulex europaeus scrub? Location: Northern French Atlantic coast. Methods: One year after the fire, the seed bank and vegetation were sampled in 1 m × 1 m plots along three transects from the oldest scrub vegetation towards the grassland. Differences in species richness, seed density and contribution of ecological groups in the seed bank and vegetation along the transects were analysed. Results: Seed density and species richness in the seed bank decreased significantly from the grassland towards the centre of the scrub vegetation; 50% of the seed bank consisted of core species of the target plant community, such as Carex arenaria, Aira praecox, Rumex acetosella and Agrostis capillaris. Seeds of these species were also found in the deeper soil layers beneath the oldest scrub vegetation, indicating that they can be considered to be long‐term persistent. Beneath the youngest scrub vegetation, seeds of rare satellite target species also occurred. However, no target species were established on the burned site after one year, resulting in a large discrepancy between seed bank and vegetation. Conclusions: Although the seeds present in the soil indicate that restoration of the acidic grassland based on the seed bank is possible, additional management actions such as mowing and soil disturbance may be necessary to restrict resprouting of Ulex and to stimulate the germination of seeds of target species in the deeper soil layers.  相似文献   

4.
Abstract. Fine-scale structure of a species-rich grassland was examined for seasonal changes caused by manipulated changes in the availability of above and below-ground resources (additional illumination with the help of mirrors and fertilization) in a field experiment. If changes induced by fertilization — which are expected to lead to a reduction in small-scale diversity —are due to intensified light competition, they should be compensated for by additional light input. Permanent plots of 40 cm × 40 cm were sampled by the point quadrat method at three angles (60°, 90° and 120° from the horizontal North-South direction), using a laser beam to position the quadrats, in early July and early September. The applied treatments did not cause apparent changes in plant leaf orientation. The degree of spatial aggregation of biomass increased seasonally in fertilized, non-illuminated plots: greater productivity at a constant light supply led to a faster growth rate of potentially dominant species, as compared to the subordinate ones. Additional illumination mitigated this effect of fertilization, indicating that the observed changes in biomass aggregation were due to increased light competition. There was a considerable seasonal decrease of variance ratio (ratio of observed variance of richness at a point and variance expected at random) in fertilized only and in illuminated only plots. In fertilized plots this was due to the positive relationship between biomass aggregation and expected variance of richness. Biomass constancy occurs to be inversely related to deficit in variance of richness. In illuminated plots, in contrast, only the observed variance of richness decreased seasonally, indicating a more uniform use of space by different species. Evidently, a deficit in variance of richness can be caused by drastically different processes, showing that the variance ratio statistic may not have a significant explanatory value in fine-scale community studies.  相似文献   

5.
Higher plant diversity reduces nitrate leaching by complementary resource use, while its relation to leaching of other N species is unclear. We determined the effects of plant species richness, functional group richness, and the presence of specific functional groups on ammonium, dissolved organic N (DON), and total dissolved N (TDN) leaching from grassland in the first 4 years after conversion from fertilized arable land to unfertilized grassland. On 62 experimental plots in Jena, Germany, with 1–60 plant species and 1–4 functional groups (legumes, grasses, tall herbs, small herbs), nitrate, ammonium, and TDN concentrations in soil solution (0–0.3 m soil layer) were measured fortnightly during 4 years. DON concentrations were calculated by subtracting inorganic N from TDN. Nitrogen concentrations were multiplied with modeled downward water fluxes to obtain N leaching. DON leaching contributed most to TDN leaching (64 ± SD 4% of TDN). Ammonium leaching was unaffected by plant diversity. Increasing species richness decreased DON leaching in the fourth year. We attribute this finding to enhanced use of DON as a C and N source and enhanced mineralization of DON by soil microorganisms. An increase of species richness decreased TDN leaching likely driven by the complementary use of nitrate by diverse mixtures. Legumes increased DON and TDN leaching likely because of their N\(_{2}\)-fixing ability and higher litter production. Grasses decreased TDN leaching because of more exhaustive use of nitrate and water. Our results demonstrate that increasing plant species richness decreases leaching of DON and TDN.  相似文献   

6.
The hump-shaped relationship between plant species richness and biomass is commonly observed at fine scale for herbaceous vegetation in temperate climates. This relationship predicts that herbaceous species richness is highest at an intermediate level of biomass that corresponds to moderate competition or disturbance. However, this relationship has not previously been investigated in high arid sub-alpine mountain grasslands. We tested the humped-back prediction in the arid Trans-Himalayan mountain grassland with a seasonal grazing system. The study area is located in the bottom of a U-shaped valley, in the Manang district (3500 m a.s.l.). We sampled two hundred plots (1m × 1m) in two different types of pastures: common pasture and old field, which both have similar grazing practices. There was a significant unimodal relationship between species richness and biomass only in the common pasture, and when the two sites were analyzed together. The species turnover is estimated by DCA in standard deviation unit. The turnover was lower in the old field than in the common pasture. The unimodal relationship between plant species richness and biomass did not disappear after accounting for unknown environmental gradients expressed as DCA (detrended correspondence analysis) axes and spatial variables. The species richness is highest at 120 ± 40 g/m2. The results indicate that a hump-shaped relationship is also found in arid Trans-Himalayan grasslands.  相似文献   

7.
Factors driving the species richness and distribution of bryophytes are poorly studied and not well understood, particularly in grasslands. We analysed the occurrence of bryophyte species and variation in species richness across 674 plots (0.5?m?×?0.5?m) in alvar vegetation (grassland on limestone pavement with thin or no soil) on Öland (Sweden) in relation to substrate characteristics and chemistry, inundation frequency, grazing pressure and geographical variables. We found 148 taxa, including 11 nationally red-listed ones. Species richness per plot was significantly associated with substrate type, positively associated with pH and grazing intensity, but negatively associated with soil depth. However, richness of species typical of, or restricted to, alvar habitats responded differently to richness of species more common in other habitats. Typical alvar species were favoured by high pH, shallow soil and low phosphate availability, while generalists preferred relatively low pH, higher phosphate availability and organic or mull soil types. Distance from the alvar margin had only weak effects. Concerning the effects on individual species and community composition, inundation frequency and pH were found to have the largest effects, although other factors (substrate type, soil depth, bare soil, bare stone, phosphate availability and grazing pressure) were more important for some individual species, stressing the importance of microsite variability and variability in management for regional species richness. From a conservation perspective, it is concluded that grazing is generally positive whilst factors increasing phosphate availability may disadvantage the typical alvar species, and proximity to the alvar margin is not a major problem.  相似文献   

8.
Questions: How is succession on ex‐arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex‐arable land, with five blocks, each containing three 10 m × 10 m experimental plots: natural colonization, a low‐ (four species) and high‐diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its‘insurance effect’: the high diversity mixtures were always able to compensate for the failure of some species.  相似文献   

9.
In a large integrated biodiversity project (‘The Jena Experiment’ in Germany) we established two experiments, one with a pool of 60 plant species that ranged broadly from dominant to subordinate competitors on large 20 × 20 m and small 3.5 × 3.5 m plots (= main experiment), and one with a pool of nine potentially dominant species on small 3.5 × 3.5 m plots (= dominance experiment). We found identical positive species richness–aboveground productivity relationships in the main experiment at both scales. This result suggests that scaling up, at least over the short term, is appropriate in interpreting the implications of such experiments for larger‐scale patterns. The species richness–productivity relationship was more pronounced in the experiment with dominant species (46.7 and 82.6% yield increase compared to mean monoculture, respectively). Additionally, transgressive overyielding occurred more frequently in the dominance experiment (67.7% of cases) than in the main experiment (23.4% of cases). Additive partitioning and relative yield total analyses showed that both complementarity and selection effects contributed to the positive net biodiversity effect.  相似文献   

10.
The bryophyte vegetation of upland limestone grassland at Buxton in the southern Pennine Hills (UK) was studied following seven years' continuous simulated climate change treatments. The experimental design involved two temperature regimes (ambient, winter warming by 3°C) in factorial combination with three moisture regimes (normal, summer drought, supplemented summer rainfall) and with five replicate blocks. Percentage cover of the bryophytes was estimated visually using 15 randomly positioned quadrats (30 cm × 30 cm) within each of the 30 3 m × 3 m plots. Significant treatment effects were found but these were relatively modest. Total bryophyte cover and cover of Calliergonella cuspidata and Rhytidiadelphus squarrosus responded negatively to drought, whereas Fissidens dubius increased in the droughted plots. Campyliadelphus chrysophyllus increased with winter warming, while R. squarrosus, Lophocolea bidentata and species richness all decreased. The effects on the total bryophyte flora were further studied by canonical correspondence analysis, which yielded a first axis reflecting the combined effects of the moisture and temperature treatments. However, this analysis and a detrended correspondence analysis of the plot data also revealed that natural factors were more important causes of variation in the grassland community than the simulated climate treatments. It was concluded that dewfall may be an important source of moisture for grassland bryophytes and that this factor may have reduced the impact of the moisture treatments. The absence of some thermophilous species such as Homalothecium lutescens in the plots initially may also have reduced their scope for major vegetational change.  相似文献   

11.
Disturbances are important natural factors affecting biological diversity, community composition, and ecosystem structure. The European ground squirrel is a semi-fossorial organism, and through disturbances caused by burrowing activities, it can play an important role as an ecosystem engineer of grasslands in central and south-eastern Europe. The aim of this study was to assess the response of grassland vegetation to disturbances by the European ground squirrel. We conducted a pairwise survey within a 1-ha study site with homogenous environmental conditions. We compared the vegetation characteristics of 2?×?2-m plots placed on 30 mounds, with paired control plots situated at a distance of 10 m from each mound. The results showed that plots disturbed by the European ground squirrel achieved a higher species richness and diversity and a distinct species composition compared to the undisturbed control plots. Vertical structure of vegetation was also significantly different with a higher proportion of the high and medium vegetation layers on the mounds. Shifts in the composition of plant life forms and life strategies were reflected by the reduction of graminoids and plant competitors, and support of forbs on the mounds. These findings suggest that the European ground squirrel helps to maintain heterogeneity in grassland ecosystems and creates patches of higher diversity and higher structural complexity in the relatively homogenous grassland vegetation of the Western Carpathians.  相似文献   

12.
Plant performance is determined by the balance of intra‐ and interspecific neighbors within an individual's zone of influence. If individuals interact over smaller scales than the scales at which communities are measured, then altering neighborhood interactions may fundamentally affect community responses. These interactions can be altered by changing the number (species richness), abundances (species evenness), and positions (species pattern) of the resident plant species, and we aimed to test whether aggregating species at planting would alter effects of species richness and evenness on biomass production at a common scale of observation in grasslands. We varied plant species richness (2, 4, or 8 species and monocultures), evenness (0.64, 0.8, or 1.0), and pattern (planted randomly or aggregated in groups of four individuals) within 1 × 1 m plots established with transplants from a pool of 16 tallgrass prairie species and assessed plot‐scale biomass production and diversity over the first three growing seasons. As expected, more species‐rich plots produced more biomass by the end of the third growing season, an effect associated with a shift from selection to complementarity effects over time. Aggregating conspecifics at a 0.25‐m scale marginally reduced biomass production across all treatments and increased diversity in the most even plots, but did not alter biodiversity effects or richness–productivity relationships. Results support the hypothesis that fine‐scale species aggregation affects diversity by promoting species coexistence in this system. However, results indicate that inherent changes in species neighborhood relationships along grassland diversity gradients may only minimally affect community (meter) – scale responses among similarly designed biodiversity–ecosystem function studies. Given that species varied in their responses to local aggregation, it may be possible to use such species‐specific results to spatially design larger‐scale grassland communities to achieve desired diversity and productivity responses.  相似文献   

13.
Abstract. Changes in species richness and species turnover during secondary succession following experimental disturbance were studied in eight permanent plots in a species‐rich dry heathland in the southern part of the Czech Republic. The treatments applied were sod‐cutting, burning, cutting of above‐ground biomass, and control. The plots were sampled annually between 1992 and 2000; species richness was analysed at three scales, 25 cm × 25 cm, 1 m × 1 m, and 3 m × 3 m. Disturbances resulted in increased species richness. The highest vascular plant richness was attained during the secondary succession after sod‐cutting, where species established on exposed bare ground. Less severe disturbances by burning and cutting also caused a slight increase in the number of vascular plant species. For bryophytes and lichens, the highest increase in the number of species was also found in the sod‐cut plots, where all cryptogams were removed by the disturbance. At the scale of 3 m × 3 m, species richness of both vascular plants and cryptogams peaked in 1995–1996, i.e. 3–4 yrs after the disturbance, and slowly decreased or slightly fluctuated without any trend thereafter. At smaller scales it either peaked later or constantly increased over the entire observation period of 9 yrs. Species mobility, expressed as species accumulation over time, was lower than reported from grasslands. Rates of species turnover, calculated as Jaccard dissimilarity between pairs of consecutive years, corresponded across different scales. This implies that successional dry heathlands have a higher small‐scale mobility than heathlands which are apparently stable at larger scale.  相似文献   

14.
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 × 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike’s Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions.  相似文献   

15.
Six transects were established on the edges of two deciduous forests near Krosno (Carpathian Foothills) to compare the species richness pattern of vascular plants, bryophytes and fungi. The transects had the shape of a cross with one arm 10 m along the forest edge and the other across the edge, 50 m into the forest interior and 12 m into the grassland. They consisted of 2×2 quadrats. The strongest edge effects were recorded for bryophyte, shrub and tree species richness, the weakest for herbaceous plant species richness. Overall vascular plant species richness and herbaceous species richness were higher in grassland than in the forest and peaked in grassland, 3 m from the forest edge. The shrub species richness was highest 1 m from the edge (in the forest) and the tree species richness 3 m from edge. Bryophyte species richness had roughly the same level across the grassland and within the first several meters of the forest, except for the 2 m zone on the edge itself where species richnes was as low as in the forest interior. Fungi species richness was low in the grassland and on the forest edge and rose dramaticaly a few meters from the edge, ramaining at the same level within the forest. The species composition across the forest-grassland border was analysed using detrended correspondence analysis. It revealed that in the case of bryophytes the increase in species richness did not correspond to a change in species composition, such as might have been caused by a general increase in bryophyte density.  相似文献   

16.
Some previous studies along an elevational gradient on a tropical mountain documented that plant species richness decreases with increasing elevation. However, most of studies did not attempt to standardize the amount of sampling effort. In this paper, we employed a standardized sampling effort to study tree species richness along an elevational gradient on Mt. Bokor, a table-shaped mountain in southwestern Cambodia, and examined relationships between tree species richness and environmental factors. We used two methods to record tree species richness: first, we recorded trees taller than 4 m in 20 uniform plots (5 × 100 m) placed at 266–1048-m elevation; and second, we collected specimens along an elevational gradient from 200 to 1048 m. For both datasets, we applied rarefaction and a Chao1 estimator to standardize the sampling efforts. A generalized linear model (GLM) was used to test the relationship of species richness with elevation. We recorded 308 tree species from 20 plots and 389 tree species from the general collections. Species richness observed in 20 plots had a weak but non-significant correlation with elevation. Species richness estimated by rarefaction or Chao1 from both data sets also showed no significant correlations with elevation. Unlike many previous studies, tree species richness was nearly constant along the elevational gradient of Mt. Bokor where temperature and precipitation are expected to vary. We suggest that the table-shaped landscape of Mt. Bokor, where elevational interval areas do not significantly change between 200 and 900 m, may be a determinant of this constant species richness.  相似文献   

17.
Global environmental change is altering temperature, precipitation patterns, resource availability, and disturbance regimes. Theory predicts that ecological presses will interact with pulse events to alter ecosystem structure and function. In 2006, we established a long‐term, multifactor global change experiment to determine the interactive effects of nighttime warming, increased atmospheric nitrogen (N) deposition, and increased winter precipitation on plant community structure and aboveground net primary production (ANPP) in a northern Chihuahuan Desert grassland. In 2009, a lightning‐caused wildfire burned through the experiment. Here, we report on the interactive effects of these global change drivers on pre‐ and postfire grassland community structure and ANPP. Our nighttime warming treatment increased winter nighttime air temperatures by an average of 1.1 °C and summer nighttime air temperature by 1.5 °C. Soil N availability was 2.5 times higher in fertilized compared with control plots. Average soil volumetric water content (VWC) in winter was slightly but significantly higher (13.0% vs. 11.0%) in plots receiving added winter rain relative to controls, and VWC was slightly higher in warmed (14.5%) compared with control (13.5%) plots during the growing season even though surface soil temperatures were significantly higher in warmed plots. Despite these significant treatment effects, ANPP and plant community structure were highly resistant to these global change drivers prior to the fire. Burning reduced the cover of the dominant grasses by more than 75%. Following the fire, forb species richness and biomass increased significantly, particularly in warmed, fertilized plots that received additional winter precipitation. Thus, although unburned grassland showed little initial response to multiple ecological presses, our results demonstrate how a single pulse disturbance can interact with chronic alterations in resource availability to increase ecosystem sensitivity to multiple drivers of global environmental change.  相似文献   

18.
The relationship of different types of grassland use with plant species richness and composition (functional groups of herbs, legumes, and grasses) has so far been studied at small regional scales or comprising only few components of land use. We comprehensively studied the relationship between abandonment, fertilization, mowing intensity, and grazing by different livestock types on plant diversity and composition of 1514 grassland sites in three regions in North-East, Central and South-West Germany. We further considered environmental site conditions including soil type and topographical situation. Fertilized grasslands showed clearly reduced plant species diversity (?15% plant species richness, ?0.1 Shannon diversity on fertilized grasslands plots of 16 m2) and changed composition (?3% proportion of herb species), grazing had the second largest effects and mowing the smallest ones. Among the grazed sites, the ones grazed by sheep had higher than average species richness (+27%), and the cattle grazed ones lower (?42%). Further, these general results were strongly modulated by interactions between the different components of land use and by regional context: land-use effects differed largely in size and sometimes even in direction between regions. This highlights the importance of comparing different regions and to involve a large number of plots when studying relationships between land use and plant diversity. Overall, our results show that great caution is necessary when extrapolating results and management recommendations to other regions.  相似文献   

19.
Question: Is the expansion of Hippophaë rhamnoides in coastal dunes associated with a decline in plant species richness, and is this decline best described by a hump‐backed relationship between species number and shrub cover? Location: Grey and yellow dunes on the East Frisian islands Spiekeroog and Norderney. Methods: Total plant species richness as well as the number of herbaceous and cryptogam species were determined in 2001 using plots of 16 m2 size. We compared shrubland plots with varying cover of Hippophaë with neighbouring dune grassland plots without shrubs as reference sites. Soil samples were collected to determine the values of some important edaphic variables (pH, organic matter, nitrogen). Results: The shrubland plots with Hippophaë had or tended to have lower soil pH and C/N ratios and higher contents of organic matter and nitrogen than the grassland plots. Total species richness was marginally significantly related to the cover of Hippophaë in a hump‐backed manner on both islands. The pattern was more pronounced for mosses and lichens than for herbaceous species. For all species groups on Spiekeroog and for the herbaceous species on Norderney, the hump‐backed relationship was much improved when using the difference in species number between shrubland and grassland plot as a dependent variable. Relationships could be improved by including the soil parameters as co‐variables. Species richness was highest at moderate levels of shrub expansion, while it was much reduced in very dense shrubland. The decrease in species number is caused by the decline in grassland species typical of the open dunes, including some rare taxa. Conclusions: The expansion of Hippophaë rhamnoides is a serious threat to the plant species richness of open coastal dunes, and needs to be counteracted by management measures.  相似文献   

20.
Question: What factors determine the deviations from the relationship between species richness (which considers species as independent entities) and phylogenetic diversity (PD) (which considers species relatedness)? What are the implications for community composition and phylogenetic structure? Location: Los Alcornocales Natural Park (36°03′–36°45′N and 5°20′–5°45′W), in southern Iberian Peninsula (Spain). Methods: We recorded all woody species and geographical features on 94 (20 m × 20 m) plots of cork oak woodlands. Disturbance information was obtained from the Park records; precipitation was estimated from local maps. PD was computed as the minimum total length of all the phylogenetic branches spanning the set of species on each site. Then, PD was regressed against species richness to test to what extent the unexplained variance in this relationship could be accounted for by environmental variables and disturbances, and against the representation of species with different regeneration strategies. Results: Species richness and PD are strongly related; however, the remaining variability can be explained by: (1) precipitation and disturbance, and (2) the proportion of seeder species. Thus, the PD both of areas with low precipitation and high disturbance, and of areas with a high representation of seeder species, is lower than what would be expected from the species richness. Conclusions: Regeneration traits are important in structuring plant community composition; specifically, they contribute to shaping biodiversity in Mediterranean ecosystems. Species richness tends to overestimate biodiversity in highly disturbed systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号