首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two models for transforming auditory signals from head-centered to eye-centered coordinates are presented. The vector subtraction model subtracts a rate-coded eye position signal from a topographically weighted auditory target position signal to produce a rate-code of target location with respect to the eye. The rate-code is converted into a place-code through a graded synaptic weighting scheme and inhibition. The dendrite model performs a mapping of head-centered auditory space onto the dendrites of eye-centered units. Individual dendrites serve as logical comparators of target location and eye position. Both models produce a topographic map of auditory space in eye-centered coordinates like that found in the primate superior colliculus. Either type can be converted into a model for transforming visual signals from retinal to head-centered coordinates.  相似文献   

3.
Myelin basic proteins were isolated from CNS tissues of chicken, turtle and frog and compared with the corresponding protein of bovine origin. At acid pH all four proteins had comparable mobilities in polyacrylamide gels. Upon electrophoresis at alkaline pH the submammalian proteins, like the bovine protein, were separated into multiple components. The components of the chicken and frog proteins had exceptionally high and low mobilities, respectively, while those of the turtle protein had mobilities comparable to those of the bovine protein. The chicken and turtle proteins were similar to the bovine protein in amino acid composition except for containing considerably more serine and valine and having higher proportions of histidine to lysine. The frog protein differed further in having an unusually high content of tyrosine (approx 9 mol/mol protein), an unusually high arginine: glycine ratio (1.09) and practically no methylated arginine (0-0.036 mol/mol protein). Like those of mammalian origin, the submammalian proteins each contained a single tryptophan and two methionines. Arginine, serine and glycine together accounted for approximately 40 per cent of the residues in each protein. The chicken and turfle proteins each contained roughly equal amounts of NG-monomethyl- and NG, NG-dimethylarginine, the two derivatives together comprising 0.5-0.6 mol/mol protein. No NG, NG-dimethylarginine was detected in any of the proteins examined. The microheterogeneity observed in the chicken and turtle proteins upon electrophoresis at alkaline pH was reproduced upon alkaline pH chromatography on carboxymethylcellulose. Chromatographic fractions of the chicken protein which differed electrophoretically at alkaline pH had virtualy identical amino acid compositions and apparent molecular weights and all contained comparable amounts of both NG-monomethyl- and NG, NG-dimethylarginine. Treatment of the submammalian proteins with BNPS-skatole yielded two fragments comparable in size, charge and staining characteristics to those similarly produced from the bovine protein (residues 1-116 and 117-170). Fragments produced from the frog protein by treatment with BrCN were comparable in size and charge to those similarly produced from the bovine protein; those produced from the chicken and turtle proteins were much different. In immunodiffusion studies the submammalian and bovine proteins showed reactions of identity when tested against rabbit anti-chicken basic protein serum.  相似文献   

4.
The hierarchical architecture of protective biological materials such as mineralized fish scales, gastropod shells, ram’s horn, antlers, and turtle shells provides unique design principles with potentials for guiding the design of protective materials and systems in the future. Understanding the structure-property relationships for these material systems at the microscale and nanoscale where failure initiates is essential. Currently, experimental techniques such as nanoindentation, X-ray CT, and SEM provide researchers with a way to correlate the mechanical behavior with hierarchical microstructures of these material systems1-6. However, a well-defined standard procedure for specimen preparation of mineralized biomaterials is not currently available. In this study, the methods for probing spatially correlated chemical, structural, and mechanical properties of the multilayered scale of A. spatula using nanoindentation, FTIR, SEM, with energy-dispersive X-ray (EDX) microanalysis, and X-ray CT are presented.  相似文献   

5.
河南舞阳县贾湖遗址中的龟鳖类   总被引:1,自引:0,他引:1  
本文记述了贾湖遗址中的龟鳖类甲壳。主要为现生黄缘闭壳龟(Cuora flavomarginata),背、腹甲完整者有50多件。其它龟类和鳖类只有部分甲壳或碎片为代表。文中除属种鉴定外,还对甲壳上的个体变异和有关人类活动等问题作了探讨。  相似文献   

6.
Restriction-site analyses of mitochondrial DNA (mtDNA) from the loggerhead sea turtle (Caretta caretta) reveal substantial phylogeographic structure among major nesting populations in the Atlantic, Indian, and Pacific oceans and the Mediterranean sea. Based on 176 samples from eight nesting populations, most breeding colonies were distinguished from other assayed nesting locations by diagnostic and often fixed restriction-site differences, indicating a strong propensity for natal homing by nesting females. Phylogenetic analyses revealed two distinctive matrilines in the loggerhead turtle that differ by a mean estimated sequence divergence p = 0.009, a value similar in magnitude to the deepest intraspecific mtDNA node (p = 0.007) reported in a global survey of the green sea turtle Chelonia mydas. In contrast to the green turtle, where a fundamental phylogenetic split distinguished turtles in the Atlantic Ocean and the Mediterranean Sea from those in the Indian and Pacific oceans, genotypes representing the two primary loggerhead mtDNA lineages were observed in both Atlantic–Mediterranean and Indian-Pacific samples. We attribute this aspect of phylogeographic structure in Caretta caretta to recent interoceanic gene flow, probably mediated by the ability of this temperate-adapted species to utilize habitats around southern Africa. These results demonstrate how differences in the ecology and geographic ranges of marine turtle species can influence their comparative global population structures.  相似文献   

7.
SUMMARY

In 1985 the Department of Water Affairs introduced an effluent phosphate standard of 1 mg l?1 (as P) in seven potentially sensitive catchments. Although this is an uniform standard, permits can be granted for effluents to exceed the standard in cases where it can be shown that the impact of the effluent on the water environment will be negligible. This policy requires the ability to predict the trophic response of waterbodies to different P loads. Two types of models were evaluated for this purpose; i.e., simple mass balance models and complex ecological models. This paper reports the results of a study undertaken to evaluate one of the complex ecological models.

The LAVSOE model, an eutrophication model for shallow lakes which was developed in Denmark, was evaluated as a management tool for the control of eutrophication at Bloemhof Dam.

To ensure that the basic underlying principles of LAVSOE were well understood and the assumptions not violated, the evaluation of LAVSOE followed the same procedure as model development; i.e., model construction check, a priori sensitivity analysis, calibration and verification.

The aim of the model construction check was to assure that the model did what it was designed to do after it was transferred onto the Water Affairs mainframe. During this phase two additional features were added to LAVSOE to accommodate South African conditions.

The aim of the a priori sensitivity analysis was to rank the parameters in order of sensitivity.

The model was calibrated by means of a trial-and-error procedure because it was simple and had heuristic value. LAVSOE could not be calibrated successfully for simulating the observed nutrient dynamics and phytoplankton growth In Bloemhof Dam.

In this paper, the main structure and the major processes of the LAVSOE model are introduced. The results of the sensitivity analysis and the reason for the unsuccessful calibration of LAVSOE on Bloemhof Dam are discussed. Modifications to LAVSOE to make it more applicable to turbid systems is proposed.  相似文献   

8.
Abstract: A new, unusually well‐preserved juvenile specimen of Ctenochelys stenoporus from the Niobrara Formation is described. The skull has come apart at its sutures and all bones of the braincase and ear region are preserved three‐dimensionally. This allows a detailed reconstruction of the important brain structures of a basal juvenile cheloniid turtle. It is compared with adult Ctenochelys specimens, and the major ontogenetic changes in the skull and postcranial skeleton are described. Furthermore, the specimen is compared with other fossil and extant cheloniids with well‐known braincases and the differences between basal and advanced cheloniids turtles are specified.  相似文献   

9.
The reliability of patient-specific finite element (FE) modelling is dependent on the ability to provide repeatable analyses. Differences of inter-operator generated grids can produce variability in strain and stress readings at a desired location, which are magnified at the surface of the model as a result of the partial volume edge effects (PVEEs). In this study, a new approach is introduced based on an in-house developed algorithm which adjusts the location of the model's surface nodes to a consistent predefined threshold Hounsfield unit value. Three cadaveric human femora specimens were CT scanned, and surface models were created after a semi-automatic segmentation by three different experienced operators. A FE analysis was conducted for each model, with and without applying the surface-adjustment algorithm (a total of 18 models), implementing identical boundary conditions. Maximum principal strain and stress and spatial coordinates were probed at six equivalent surface nodes from the six generated models for each of the three specimens at locations commonly utilised for experimental strain guage measurement validation. A Wilcoxon signed-ranks test was conducted to determine inter-operator variability and the impact of the PVEE-adjustment algorithm. The average inter-operator difference in stress values was significantly reduced after applying the adjustment algorithm (before: 3.32 ± 4.35 MPa, after: 1.47 ± 1.77 MPa, p = 0.025). Strain values were found to be less sensitive to inter-operative variability (p = 0.286). In summary, the new approach as presented in this study may provide a means to improve the repeatability of subject-specific FE models of bone obtained from CT data.  相似文献   

10.
Finite element (FE) modelling has been proposed as a tool for estimating fracture risk and patient-specific FE models are commonly based on computed tomography (CT). Here, we present a novel method to automatically create personalised 3D models from standard 2D hip radiographs. A set of geometrical parameters of the femur were determined from seven ap hip radiographs and compared to the 3D femoral shape obtained from CT as training material; the error in reconstructing the 3D model from the 2D radiographs was assessed. Using the geometry parameters as the input, the 3D shape of another 21 femora was built and meshed, separating a cortical and trabecular compartment. The material properties were derived from the homogeneity index assessed by texture analysis of the radiographs, with focus on the principal tensile and compressive trabecular systems. The ability of these FE models to predict failure load as determined by experimental biomechanical testing was evaluated and compared to the predictive ability of DXA. The average reconstruction error of the 3D models was 1.77 mm (±1.17 mm), with the error being smallest in the femoral head and neck, and greatest in the trochanter. The correlation of the FE predicted failure load with the experimental failure load was r2=64% for the reconstruction FE model, which was significantly better (p<0.05) than that for DXA (r2=24%). This novel method for automatically constructing a patient-specific 3D finite element model from standard 2D radiographs shows encouraging results in estimating patient-specific failure loads.  相似文献   

11.
Clinically in medializing calcaneal osteotomy (MCO), foot and ankle surgeons are facing difficulties in choosing appropriate surgical parameters due to the individual differences in deformities among flatfoot patients. Traditional cadaveric studies have provided important information regarding the biomechanical effects of tendons, ligaments, and plantar fascia, but limitations have been reached when dealing with individual differences and tailoring patient-specific surgeries. Therefore, this study aimed at implementing the finite element (FE) method to investigate the effect of different MCO parameters to help foot and ankle surgeons performing patient-specific surgeries. This study constructed FE models of a flatfoot and a healthy foot based on computed tomography (CT) images. After validating the FE models with experimental measurements, differences in plantar stress were compared between two models and a criterion was established for evaluating the performance of surgical simulations. Four MCO parameters were then studied through FE simulations. Results suggested that the transverse angle, β, and translation distance, d, affected surgical performance. Therefore, special attentions may be recommended when choosing these two parameters clinically. However, the sagittal angle, α, and osteotomy position, p, were found to have less effect on the MCO performance.  相似文献   

12.
Three turtle shells from the Middle Jurassic Xintiangou Formation of Yunyang (Chongqing, China) are described and assigned to Xinjiangchelyidae (Testudines: Eucryptodira). This is the first report of turtle remains from the Xintiangou Formation, Sichuan Basin and represents the oldest known Xinjiangchelyidae. The assemblage includes two taxa, Protoxinjiangchelys sp. and Xinjiangchelyidae indet. This discovery extends the stratigraphical distribution of Xinjiangchelyidae and improves our knowledge about the early evolution of that family. It demonstrates that by the Middle Jurassic, at the time of deposition of the Xintiangou Formation, the group was already diversified in the Sichuan Basin.  相似文献   

13.
14.
In an earlier investigation (Cruse and Brüwer 1987) an algorithmic model was proposed which describes targeting movements of a human arm when restricted to a horizontal plane. As three joints at shoulder, elbow and wrist are allowed to move, the system is redundant. Two models are discussed here which replace this algorithmic model by a network model. Both networks solve the static problem, i.e. they provide the joint angles which the arm has to adopt in order to reach a given point in the workspace. In the first model the position of this point is given in the form ofxy coordinates, the second model obtains this information by means of a retina-like input layer. The second model is expanded by a simple procedure to describe movements from a start to an end point. The results qualitatively correspond to those obtained from human subjects. The advantages of the network models in comparison to the algorithmic model are discussed.  相似文献   

15.
Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low‐drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade‐offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator‐induced loads. We tested the idea that “lotic” shell shapes are weaker than “lentic” shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. “Lotic” shell shapes produced significantly higher stresses than “lentic” shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many‐to‐one mapping of shell shape onto strength, P. concinna experiences a trade‐off in shell shape between hydrodynamic and mechanical performance. This trade‐off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade‐off in some cases, as changes in size can drastically affect mechanical performance while having little effect on hydrodynamic performance. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
The quaternary structure of Lumbricus terrestris hemoglobin was investigated by small-angle x-ray scattering (SAXS). Based on the SAXS data from several independent experiments, a three-dimensional (3D) consensus model was established to simulate the solution structure of this complex protein at low resolution (about 3 nm) and to yield the particle dimensions. The model is built up from a large number of small spheres of different weights, a result of the two-step procedure used to calculate the SAXS model. It accounts for the arrangement of 12 subunits in a hexagonal bilayer structure and for an additional central unit of cylinder-like shape. This model provides an excellent fit of the experimental scattering curve of the protein up to h = 1 nm−1 and a nearly perfect fit of the experimental distance distribution function p(r) in the whole range. Scattering curves and p(r) functions were also calculated for low-resolution models based on 3D reconstructions obtained by cryoelectron microscopy (EM). The calculated functions of these models also provide a very good fit of the experimental scattering curve (even at h > 1 nm−1) and p(r) function, if hydration is taken into account and the original model coordinates are slightly rescaled. The comparison of models reveals that both the SAXS-based and the EM-based model lead to a similar simulation of the protein structure and to similar particle dimensions. The essential differences between the models concern the hexagonal bilayer arrangement (eclipsed in the SAXS model, one layer slightly rotated in the EM model), and the mass distribution, mainly on the surface and in the central part of the protein complex. © John Wiley & Sons, Inc. Biopoly 45: 289–298, 1998  相似文献   

17.
Abstract: Patagoniaemys gasparinae gen. et sp. nov. is a new stem turtle found in central Patagonia, Chubut Province, Argentina, in outcrops of the La Colonia Formation (Campanian–Maastrichtian). This is a turtle of relatively large size (carapace length c. 70 cm), and the preserved remains of the holotype consist of skull fragments and several postcranial elements including a nearly complete vertebral column. A phylogenetic analysis shows Patagoniaemys gasparinae gen. et sp. nov. forming a monophyletic group with Otwayemys cunicularius and Mongolochelys efremovi, as a sister group to Meiolaniidae. A comprehensive review confirms that formed cervical vertebrae appeared independently several times during turtle evolution: in the clade that includes Patagoniaemys gasparinae gen. et sp. nov. and Meiolaniidae, in some baenids, in the total group Pleurodira and in crown group Cryptodira. Likewise, formed caudal vertebrae appeared several times in turtle evolution.  相似文献   

18.
In order to control voluntary movements, the central nervous system (CNS) must solve the following three computational problems at different levels: the determination of a desired trajectory in the visual coordinates, the transformation of its coordinates to the body coordinates and the generation of motor command. Based on physiological knowledge and previous models, we propose a hierarchical neural network model which accounts for the generation of motor command. In our model the association cortex provides the motor cortex with the desired trajectory in the body coordinates, where the motor command is then calculated by means of long-loop sensory feedback. Within the spinocerebellum — magnocellular red nucleus system, an internal neural model of the dynamics of the musculoskeletal system is acquired with practice, because of the heterosynaptic plasticity, while monitoring the motor command and the results of movement. Internal feedback control with this dynamical model updates the motor command by predicting a possible error of movement. Within the cerebrocerebellum — parvocellular red nucleus system, an internal neural model of the inverse-dynamics of the musculo-skeletal system is acquired while monitoring the desired trajectory and the motor command. The inverse-dynamics model substitutes for other brain regions in the complex computation of the motor command. The dynamics and the inverse-dynamics models are realized by a parallel distributed neural network, which comprises many sub-systems computing various nonlinear transformations of input signals and a neuron with heterosynaptic plasticity (that is, changes of synaptic weights are assumed proportional to a product of two kinds of synaptic inputs). Control and learning performance of the model was investigated by computer simulation, in which a robotic manipulator was used as a controlled system, with the following results: (1) Both the dynamics and the inverse-dynamics models were acquired during control of movements. (2) As motor learning proceeded, the inverse-dynamics model gradually took the place of external feedback as the main controller. Concomitantly, overall control performance became much better. (3) Once the neural network model learned to control some movement, it could control quite different and faster movements. (4) The neural netowrk model worked well even when only very limited information about the fundamental dynamical structure of the controlled system was available. Consequently, the model not only accounts for the learning and control capability of the CNS, but also provides a promising parallel-distributed control scheme for a large-scale complex object whose dynamics are only partially known.  相似文献   

19.
新疆首次发现的侏罗纪龟类   总被引:2,自引:2,他引:0  
本文记述了新疆准噶尔盆地的一件龟化石,名为准噶尔新疆龟,新属、新种 (Xinjiangchelys junggarensis, Gen. et sp. nov.),其时代可能为中侏罗世.这是新疆地区侏罗纪龟类的首次记录.早、中侏罗世是龟类的早期进化阶段,国外材料甚少.文章在讨论了新疆龟的系统分类后,综述了我国早、中侏罗世的龟类记录,并结合泰国近年发现的晚三叠世的龟类,认为亚洲是迄今所知拥有龟鳖类进化各时期记录最完全的地区,是探索龟类起源和早期进化的重要地区之一.  相似文献   

20.
This study explores various options available for choosing the number of principal coordinates m in the canonical analysis of principal coordinates ‘CAP’, a useful procedure that has wide‐ranging application wherever multivariate data sets are collected or generated. Choosing too few coordinates (small m) in this constrained (i.e. hypothesis‐based) ordination procedure may lead to inadequate separation of the groups (when used as a canonical discriminant analysis) or to inadequate correlation between explanatory and response variables (when used as a canonical correlations analysis), whereas choosing too many (large m) may lead to overparameterization, resulting in overfitting of the data and spurious relationships. It is shown here that the optimum number of principal coordinates is simply the one that results in the smallest P value in the canonical analysis carried out using permutations. For data in which more than one m value results in the same minimum P value, m should be chosen from that set to be the number of principal coordinates that minimizes the leave‐one‐out residual sum of squares. This choice of m provides suitable solutions for each of the 17 case studies investigated here (which yielded 17 canonical discriminant analyses and 7 canonical correlation analyses).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号